
Artificial Intelligence Education Studies
Volume 1, Issue 2, 2025, Page 1-18
https://doi.org/10.6914/aiese.010201

Artificial Intelligence
Education Studies

Applications of Large Multimodal Models (LMMs) in STEM
Education: From Visual Explanations to Virtual Experiments
Changkui LI
Hong Kong Integration Research Institute, Email:lichangkui@gmail.com, https://orcid.org/0000-0001-7446-0198

Abstract
Generative Artificial Intelligence (GAI) refers to a class of AI systems capable of creating novel, coherent, and
contextually relevant content—such as text, images, audio, and video—based on patterns learned from extensive
training datasets. The public release and rapid refinement of large language models (LLMs) like ChatGPT have
accelerated the adoption of GAI across various medical specialties, offering new tools for education, clinical
simulation, and research. Dermatology training, which heavily relies on visual pattern recognition and requires
extensive exposure to diverse morphological presentations, faces persistent challenges such as uneven distribu-
tion of educational resources, limited patient exposure for rare conditions, and variability in teaching quality.
Exploring the integration of GAI into pedagogical frameworks offers innovative approaches to address these
challenges, potentially enhancing the quality, standardization, scalability, and accessibility of dermatology ed-
ucation. This comprehensive review examines the core concepts and technical foundations of GAI, highlights
its specific applications within dermatology teaching and learning—including simulated case generation, per-
sonalized learning pathways, and academic support—and discusses the current limitations, practical challenges,
and ethical considerations surrounding its use. The aim is to provide a balanced perspective on the significant
potential of GAI for transforming dermatology education and to offer evidence-based insights to guide future
exploration, implementation, and policy development.

Keywords Large Multimodal Models (LMMs); STEM Education; Visual Explanations; Virtual Laboratories / Virtual
Experiments; Critical AI Literacy

1 Introduction

1.1 The Emergence of Large Multimodal Models (LMMs) in the Educational Landscape

The rapid evolution of artificial intelligence (AI) has culminated in the development of Large Multimodal Models
(LMMs), sophisticated systems capable of processing and integrating information from a variety of data types.[1]

This marks a significant departure from earlier Large Language Models (LLMs), which primarily operated within
the textual domain. The capacity of LMMs to understand and generate content across modalities such as images,
audio, video, and even programming code holds profound implications for numerous fields, with education stand-
ing as a prime beneficiary. Within the educational sphere, Science, Technology, Engineering, and Mathematics
(STEM) disciplines are uniquely positioned to leverage these multimodal capabilities. STEM fields inherently rely
on diverse forms of representation, including complex diagrams, mathematical equations, experimental data, and
physical phenomena, all of which can be more holistically addressed by LMMs than by their unimodal counterparts.

The advent of LMMs signals a potential transformation in educational methodologies, promising to move beyond
predominantly text-based digital interactions towards richer, more contextualized, and interactive learning experi-
ences.[1] This transition is not merely an incremental technological improvement; rather, it represents a potential
paradigm shift. Where LLMs could assist with tasks like summarizing texts or answering factual questions, LMMs
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can engage with the core visual, auditory, and interactive elements that are fundamental to STEM understand-
ing. This capability allows AI to function less as a text-based assistant and more as a co-constructor of multimodal
comprehension, fundamentally altering how AI can be integrated into the learning process.

1.2 Defining LMMs: Capabilities Beyond Text for STEM

LMMs are AI models engineered to process, understand, and generate information from multiple types of data con-
currently.[1] Unlike LLMs, which are confined to textual input and output, LMMs can interpret and create content
involving text, images, audio, video, and, increasingly, more specialized data forms like programming code or sensor
readings relevant to scientific experiments.[4] Prominent examples of LMMs with significant multimodal process-
ing capabilities relevant to STEM include Google’s Gemini, which can reason across text, images, video, audio,
and code[4]; Meta’s Llama 3.2 Vision, which excels at image-text tasks such as chart and diagram understanding[5];
NVIDIA’s NVLM family, designed for robust multimodal reasoning and high-resolution image handling[5]; and
OpenAI’s GPT-4o, which demonstrates advanced capabilities in scientific problem-solving involving visual data.[6]

The core distinction between LMMs and LLMs lies in this expanded data processing spectrum. For STEM
education, this means LMMs can engage with scientific diagrams, analyze video demonstrations of experiments,
generate visual representations of abstract concepts, or even produce code for simulations—tasks that are largely
outside the scope of text-only LLMs.[2] This enhanced capacity allows LMMs to support a wider and deeper range
of pedagogical activities in STEM.

The following table provides a comparative overview of LMMs and LLMs in the context of educational applica-
tions:

Table 1: Comparative Overview of LMMs and LLMs for Educational Applications
Feature Large Language Models (LLMs) Large Multimodal Models (LMMs)

Data Modali-
ties

Primarily text-based[2] Text, images, audio, video, code, sensor data[1]

Integration
Capabilities

Limited to text; cannot inherently
combine with other data types

Strong at combining and understanding diverse
data types simultaneously[2]

Typical Ap-
plications

Writing assistance, translation,
Q&A, summarization[2]

Image captioning, visual Q&A, video analy-
sis, text-to-image/video generation, multimodal
data analysis[2]

STEM-
Specific
Potential

Explaining concepts textually,
generating problem sets, basic
coding

Generating/interpreting diagrams, visualizing
data, creating simulations, analyzing experimen-
tal videos, interactive tutorials

Key Limita-
tions

Inability to process visual or audi-
tory STEM content directly

Technical complexity, data demands, potential
for cross-modal hallucination, alignment of het-
erogeneous data[2]

1.3 Rationale and Objectives for LMMs in STEM Education

The rationale for integrating LMMs into STEM education is compelling. Many core STEM concepts are inher-
ently abstract and benefit significantly from visual, interactive, and experimental modes of engagement, which
LMMs are uniquely equipped to support.[8] Traditional teaching methods, and even earlier forms of educational
technology, often struggle to provide sufficiently rich and adaptable multimodal experiences at scale. LMMs, with
their capacity to generate and interpret diverse data formats, offer the potential to overcome these limitations. For
instance, the creation of high-quality interactive simulations or dynamic visual explanations has historically been
resource-intensive.[11] LMMs could potentially automate or semi-automate this process[13], thereby enabling peda-
gogical designs, such as highly personalized inquiry-driven virtual labs, that were previously too complex or costly
to implement widely.

This paper aims to critically review the current and potential applications of LMMs in STEM education, with
a specific focus on two pivotal areas: the enhancement of visual explanations and the facilitation of virtual experi-
ments. It will analyze the associated pedagogical frameworks necessary for effective integration, explore innovative
assessment strategies suitable for LMM-rich learning environments, and scrutinize the ethical considerations that
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accompany such powerful technologies. A further objective is to delineate promising future research directions that
can guide the responsible and impactful development and deployment of LMMs in STEM education. The introduc-
tion of LMMs may also necessitate a re-evaluation of ”literacy” in STEM. Beyond traditional textual and numerical
literacy, students and educators will increasingly require skills in multimodal AI interaction—the ability to effectively
prompt, interpret, and critically evaluate LMM outputs across various data types. This emerging form of literacy
will be crucial for navigating an educational and professional landscape increasingly influenced by advanced AI.

2 Theoretical Underpinnings for LMM Integration in STEM

The effective integration of LMMs into STEM education necessitates a robust theoretical foundation that considers
how students learn with and through these complex technologies. Established learning theories provide a starting
point, though they may require adaptation, while new pedagogical frameworks are emerging to specifically address
the unique affordances and challenges of multimodal AI.

2.1 Relevant Learning Theories in the Age of LMMs

Several learning theories are particularly relevant to the integration of LMMs. First, **Constructivism** posits that
learners actively construct their own understanding and knowledge of the world through experiencing things and
reflecting on those experiences. LMMs align well with constructivist principles by providing tools and environments
where students can actively engage with multimodal content and simulations.[15] For example, an LMM could gener-
ate a dynamic model of a cell, allowing students to manipulate variables and observe outcomes, thereby constructing
their understanding of cellular processes. The capacity of LMMs to generate personalized learning environments
and diverse resources can further facilitate this exploration and discovery, empowering students to build knowledge
in a manner tailored to their individual pathways. Second, **Cognitive Load Theory (CLT)** is concerned with the
limitations of working memory during learning.[17] Instructional design should aim to optimize cognitive load by
minimizing extraneous load (imposed by poor design), managing intrinsic load (inherent to the material’s complex-
ity), and fostering germane load (devoted to learning and schema construction). LMMs present a dual potential here.
On one hand, they can reduce extraneous cognitive load by providing clear, concise visual explanations or by simpli-
fying complex information into more digestible multimodal formats.[17] On the other hand, poorly designed LMM
interactions, inaccurate outputs, or overwhelming amounts of generated information could inadvertently increase
cognitive load, hindering learning.[18] A study by Zhai et al. highlighted that while LLMs might reduce mental effort
(a component of cognitive load), this could come at the cost of compromised depth in student scientific inquiry.[18]

This ”cognitive ease at a cost” suggests that the interaction with LMMs must be carefully managed. Traditional CLT
did not anticipate AI agency or the dynamic nature of AI-generated content; thus, CLT requires re-evaluation. The
cognitive load associated with verifying AI outputs or managing the interaction itself introduces new variables that
must be considered in instructional design. Finally, **Mayer’s Multimedia Learning Principles** offer research-based
guidelines for designing effective multimedia instruction, emphasizing that people learn better from words and pic-
tures than from words alone.[20] Key principles include the Coherence Principle (excluding extraneous material),
the Signaling Principle (highlighting essential material), the Redundancy Principle (avoiding presenting identical
information in multiple formats simultaneously if one is narration), and the Spatial and Temporal Contiguity Prin-
ciples (placing corresponding words and pictures near each other and presenting them simultaneously).[20] These
principles are highly relevant for designing and evaluating LMM-generated visual and auditory explanations. For
LMM-generated content to be pedagogically effective, it must adhere to these guidelines to manage cognitive load
and promote meaningful learning. However, since LMMs generate dynamic multimedia, these principles need to be
applied not just to the final output, but to the process of generation and interaction. For instance, an LMM that gen-
erates an overly complex diagram violating the Coherence Principle, or an animation with poorly timed narration
violating the Temporal Contiguity Principle, could impede rather than support learning.

2.2 Pedagogical Frameworks for Multimodal AI in STEM

As LMMs become more integrated into education, specific pedagogical frameworks are needed to guide their effec-
tive and ethical use in STEM. One such approach, the **Multidimensional Frameworks for GenAI in Education**
outlined by Educause, identifies definitional, systemic, cognitive processing, and pedagogical dimensions for view-
ing GenAI.[24] The pedagogical dimension is particularly relevant, outlining developmental levels from naïve use
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through AI competence and AI literacy to ethical use. This provides a broad structure for understanding LMM
adoption. Another key framework is **Inquiry-Based Learning (IBL)**, which emphasizes student-centered learn-
ing where students ask questions and investigate phenomena.[25] LMMs can significantly support IBL by providing
tools for hypothesis generation and experimentation in virtual environments, such as in the PrimaryAI curricu-
lum which integrates AI concepts into an IBL framework.[26] The **ARCHED (AI for Responsible, Collaborative,
Human-centered Education Instructional Design)** framework proposes a structured workflow emphasizing collab-
oration between educators and AI, with educators as the primary decision-makers.[27] Lastly, **Tseng & Warschauer’s
Framework**, originally for AI writing tools, offers valuable principles for general AI literacy in STEM: Understand,
Access, Prompt, Corroborate, and Incorporate.[28] An updated version also emphasizes ”think first” and ”reflect” on
AI use.[30]

Effective pedagogical frameworks for LMMs will likely need to be inherently meta-cognitive. They must ex-
plicitly teach students about the AI’s underlying mechanisms, its potential biases, how its ”knowledge” is constructed,
and how to engage with it as a powerful but fallible partner. Frameworks like ARCHED[27] which emphasize hu-
man agency, and Tseng & Warschauer’s[31] which includes corroboration, point towards this need. The focus on
epistemic insights[32] further underscores that pedagogy must move beyond using LMMs as black boxes and involve
teaching students about the LMMs themselves.

Table 2: Key Pedagogical Frameworks for LMM Integration in STEM Education
Framework
Name

Core Principles Key LMM Affor-
dances Leveraged

STEMApplication Examples

Multidimensional
GenAI Frame-
work

Defines levels of AI proficiency
(Naïve Use, Competence, Lit-
eracy, Ethics); considers def-
initional, systemic, cognitive,
pedagogical dimensions.

Content generation,
personalized feedback,
data analysis.

Developing institutional AI
policies, designing AI literacy
curricula, guiding ethical AI
use in research projects.

Inquiry-Based
Learning (IBL) +
AI

Student-led questioning, in-
vestigation, experimentation,
and conclusion-drawing, sup-
ported by AI tools.

Simulation generation,
data visualization, hy-
pothesis testing sup-
port, access to informa-
tion.

Students use LMMs to de-
sign virtual experiments, an-
alyze simulated data, or ex-
plore complex scientific ques-
tions (e.g., PrimaryAI).

ARCHED
Framework

Human-AI collaboration in
instructional design; human
agency maintained; trans-
parency; Bloom’s taxonomy as
foundation.

Generation of peda-
gogical options, align-
ment checking with
learning objectives.

Educators use LMMs to brain-
storm lesson activities, generate
visual aids, or draft assessment
items, with final curation and
refinement by the educator.

Tseng &
Warschauer’s
Framework
(adapted for
STEM)

Understand AI, Access tools,
Prompt effectively, Corrob-
orate outputs, Incorporate
thoughtfully; Think first,
Reflect after.

Information retrieval,
content generation
(text, visuals, code),
problem-solving assis-
tance.

Students learn to critically use
LMMs for research, generat-
ing initial drafts of lab reports,
or debugging code for simula-
tions.

Human-
Centric AI-First
(HCAIF) Frame-
work

Attribution of AI use, student
reflection on AI’s role, per-
sonalized learning, continuous
feedback, competency devel-
opment.

Personalized con-
tent/exercise creation,
feedback generation,
assessment support.

Students use LMMs for re-
search and content creation,
clearly attributing AI contri-
butions and reflecting on the
learning process in journals.

2.3 Cultivating Critical AI Literacy and Epistemic Vigilance

Beyond understanding how to operate LMMs, students in STEM must develop critical AI literacy. This involves
not just knowing how to use these tools, but how to think critically about their outputs, their inherent limitations,
and their ethical implications.[34] A core component of this is fostering ”epistemic vigilance”—an attitude of healthy
skepticism and a commitment to verifying information generated by LMMs, especially in scientific contexts where
accuracy is paramount.

Students need to grasp the epistemic nature of AI-generated knowledge: how LMMs ”know” what they know
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(i.e., through pattern recognition in vast datasets, not through genuine understanding or empirical validation in the
scientific sense), the sources and certainty of this ”knowledge,” and its inherent limitations.[32] This includes un-
derstanding AI’s specific applications in scientific endeavors and recognizing both the similarities (e.g., use of data,
pattern identification) and crucial differences (e.g., lack of causal reasoning, potential for ungrounded ”hallucina-
tions”) in the epistemological approaches of science versus AI.[32] The development of critical AI literacy is therefore
not merely an auxiliary skill but an ethical imperative in STEM. Uncritical acceptance of LMM-generated outputs,
whether textual, visual, or simulative, could lead to the propagation of misinformation, the reinforcement of flawed
scientific models, or the adoption of biased conclusions, ultimately undermining the integrity of scientific learning
and practice.

3 LMMs for Enhanced Visual Explanations in STEM Disciplines

Visualizations are indispensable in STEM, serving to clarify complex phenomena, represent abstract concepts, and
communicate data. LMMs offer novel capabilities in both generating and interpreting scientific visuals, potentially
transforming how students engage with and understand these critical representations.

3.1 Generating and Interpreting Complex Scientific Visualizations

LMMs are demonstrating increasing proficiency in creating novel visual representations of scientific concepts, data,
and processes.[13] This goes beyond simple image generation to include the creation of structured diagrams and
interpretable visual outputs.

A notable development is the ”Visualizing Thought” framework, where LMMs generate conceptual diagrams—
for instance, by producing executable Matplotlib code—to assist in their own reasoning and planning processes.[13]

This approach allows an LMM to visually ”show its work,” making its intermediate reasoning steps more transparent.
In planning tasks like the Blocksworld domain, this method significantly improved GPT-4o’s accuracy from 35.5%
to 90.2%.[13] This ability of LMMs to generate code for visualizations is a more profound capability than merely pro-
ducing static images. It opens pathways for dynamic, customizable, and auditable visual explanations, aligning better
with scientific practices of modeling and parameter exploration, and means LMMs can create tools for visualization,
not just the visualizations themselves.

Furthermore, frameworks like Q-SIT are training LMMs for image quality scoring and interpretation, teach-
ing them low-level visual interpretation skills.[39] While initially focused on general image quality assessment, the
principles of teaching models to understand visual attributes have foundational implications for interpreting scientific
images, which often contain nuanced details and specific conventions.

The SciVerse benchmark provides critical insights into LMMs’ abilities to comprehend multimodal scientific
problems, particularly those involving diagrams.[6] Findings from SciVerse indicate that while closed-source LMMs
often outperform their open-source counterparts in knowledge comprehension and visual perception in scientific
domains, all LMMs currently face challenges with Optical Character Recognition (OCR) and interpreting infor-
mation that is solely embedded within diagrams.[6] This highlights a crucial area for development if LMMs are to
reliably assist with diagram-heavy STEM content.

3.2 LMMs in Making Abstract STEM Concepts Tangible

Many STEM concepts, such as molecular interactions, quantum phenomena, or complex ecological systems, are
abstract and challenging for students to grasp. LMMs hold the potential to make these concepts more tangible by
generating animations, interactive diagrams, and visual metaphors.[43] For example, an LMM could generate a 3D
animation of protein folding or simulate the effects of changing variables in an ecosystem. Multimodal learning
analytics (MMLA) principles suggest that integrating diverse data sources (visual, auditory, textual) leads to a richer
understanding of learning processes[43]; LMMs can embody this principle by creating content that inherently com-
bines these modalities.

Student engagement can also be enhanced by the aesthetic qualities of AI-generated visuals. Preservice chemistry
teachers, for instance, noted that visuals created by GenAI tools were often ”attractive, artistic, and interesting”.[46]

While aesthetic appeal is not a substitute for scientific accuracy, it can serve as an important hook to draw students
into complex topics, making initial engagement more likely.
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3.3 Challenges: Ensuring Scientific Accuracy and Mitigating Cognitive Biases in AI-Generated Visuals

Despite their potential, LMM-generated visuals come with significant challenges, primarily concerning scientific
accuracy and the introduction or amplification of cognitive biases.

The most critical issue is ensuring the scientific accuracy of the visuals. LMMs are known to ”hallucinate” or pro-
duce plausible-sounding but factually incorrect information, and this extends to visual outputs.[8] Diagrams might
contain incorrect relationships, labels, or representations of processes. The study involving preservice chemistry
teachers found that while AI-generated visuals were often aesthetically pleasing, they frequently suffered from scien-
tific inaccuracies, pedagogical inappropriateness, or representational limitations (e.g., missing levels of representation
like particulate views in chemistry).[46] This dissatisfaction underscores a critical gap: the current inability of many
LMMs to consistently produce scientifically sound visuals.

Cognitive biases can also be introduced or perpetuated by AI-generated visuals.[49] LMMs learn from vast datasets,
which may contain inherent societal biases related to gender, race, or culture. If these biases are reflected in the
visuals—for example, by consistently depicting scientists as male or underrepresenting certain demographic groups
in medical illustrations—they can reinforce harmful stereotypes and negatively impact students’ perceptions of who
belongs in STEM or how scientific concepts apply to diverse populations.[49] Beyond demographic biases, AI visuals
might oversimplify complex phenomena or present information in a way that subtly steers interpretation towards a
particular (potentially flawed) viewpoint, impacting the development of nuanced scientific understanding.

Another concern is the potential for ”model collapse,” where LMMs trained extensively on AI-generated content
(including visuals) may begin to degrade in quality and accuracy over time, as errors and artifacts in one generation
of AI content are learned and amplified by the next.[51] This could lead to a future where the pool of reliable visual
information is contaminated.

Finally, the ”cognitive ease at a cost” dilemma, identified by Zhai et al.[18] and discussed in [18], is particularly
relevant for visuals. If LMM-generated visuals are highly polished and seemingly authoritative, students might accept
them uncritically, reducing their cognitive effort but also compromising deeper processing, critical evaluation, and
genuine understanding.

3.4 Instructional Design Principles for Effective AI-Generated Visuals

Toharness the benefits of LMM-generated visuals whilemitigating their risks, careful instructional design is paramount.
Applying Mayer’s Multimedia Learning Principles[20] to the design and selection of LMM-generated content can
help ensure clarity, reduce extraneous cognitive load, and foster generative processing. For example, ensuring that
an AI-generated diagram and its accompanying textual explanation are presented contiguously and coherently is
vital.

The ARCHED framework’s emphasis on human educators as the primary decision-makers is crucial.[27] Educa-
tors must retain control over selecting, modifying, and validating AI-generated visual content before presenting it
to students, ensuring pedagogical and scientific appropriateness.

Developing students’ critical evaluation skills for AI-generated visuals is essential. This includes teaching them
to cross-reference information with credible scientific sources, identify potential inaccuracies or biases, and question
the representations presented.[51] The dissatisfaction of preservice teachers with AI visuals[46] actually points to an
important pedagogical opportunity: LMMs can become powerful tools for developing both teachers’ and students’
representational competence and critical evaluation skills if their outputs are used as objects of critique rather than
infallible sources of truth.

Indeed, AI’s ”errors” or imperfections in visual generation can be transformed into pedagogical opportunities.[38]

Analyzing a flawed AI-generated diagram can spark rich classroom discussions about scientific accuracy, common
misconceptions, and the principles of effective scientific representation. This approach shifts the focus from passive
consumption of AI content to active, critical engagement.

4 Transforming STEM Learning through LMM-Powered Virtual Experiments

Virtual laboratories have long been a component of STEM education, offering safe, accessible, and repeatable exper-
imental experiences. The advent of LMMs promises to elevate these virtual environments, transforming them into
more dynamic, interactive, and inquiry-driven learning tools.
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4.1 The Evolution of Virtual Laboratories in STEM Education

Traditional virtual labs typically provide pre-programmed simulations of scientific experiments. Their benefits in-
clude enhanced safety (allowing exploration of hazardous procedures without risk), increased accessibility (overcom-
ing limitations of physical lab equipment or location), and repeatability (enabling students to conduct experiments
multiple times to observe patterns or test different variables).[9] Platforms like PhET Interactive Simulations have
demonstrated the efficacy of such tools in improving conceptual understanding.[53] However, a common limita-
tion of these pre-programmed virtual labs is that they often feature fixed scenarios and offer limited adaptability to
individual student inquiries or novel experimental designs.

4.2 LMMs as Engines for Dynamic and Interactive Simulations

LMMs possess the potential to overcome the static nature of traditional virtual labs by serving as engines for more
dynamic, interactive, and responsive simulations. Their ability to process natural language prompts, generate code,
and reason about complex systems opens new avenues for creating virtual experimental environments. A key area
is the development of **Domain-Specific LMMs for Simulations**. For instance, **ChemDFM-X** is a cross-modal
dialogue foundation model specifically designed for chemistry.[14] It can handle diverse chemical data modalities, in-
cluding molecular graphs (2D structures), 3D molecular conformations, tandem mass spectra (MS2), infrared spectra
(IR), and various molecular and reaction images. Its capabilities extend to tasks like predicting molecular properties
and completing chemical reactions. The architecture of ChemDFM-X, featuring separate encoders for different
modalities and a unified LLM decoder (ChemDFM), allows it to integrate and reason over this diverse chemical
information. This demonstrates the potential for LMMs to power sophisticated, domain-specific simulations where
students could, for example, input a molecular structure and receive predicted properties or simulate reaction path-
ways. Furthermore, **LLMPhy** offers a framework for complex physical reasoning by synergizing LMMs with
physics engines.[58] In a zero-shot manner, the LMM generates code (e.g., Python scripts for a simulator like PyBul-
let) to iteratively estimate physical hyperparameters of a system, such as friction coefficients or object damping. It
achieves this through an implicit analysis-by-synthesis approach, where the LMM proposes parameters, the simulator
runs the experiment, and the LMM refines its estimations based on the outcomes. Once these parameters are in-
ferred, LLMPhy can use them to ”imagine” or predict the dynamics of the scene, for example, on the TraySim dataset
which involves predicting the stability of objects on a tray after an impact. This showcases LMMs not just running
simulations, but actively reasoning about and configuring the underlying physics models of those simulations.

These examples illustrate how LMMs can create more open-ended and adaptive virtual experimental environ-
ments compared to traditional, pre-scripted ones.[66] Students might be able to define experimental parameters using
natural language, or the LMM could dynamically adjust the simulation based on student actions and queries. The
true innovation here lies not just in simulating phenomena, but in the potential for LMMs to co-design experiments
with students and to explain the simulation’s underlying model (even if imperfectly). This fosters deeper model-based
reasoning, as students could interact with the LMM to modify parameters, question assumptions embedded in the
simulation’s code, or even co-create novel experimental setups via natural language, promoting a more active and
authentic inquiry role.

4.3 Fostering Scientific Inquiry, Experimentation, and Problem-Solving Skills

LMM-powered virtual labs are well-suited to support Inquiry-Based Learning (IBL) methodologies.[25] By provid-
ing flexible and responsive simulated environments, LMMs can empower students to **formulate hypotheses** by
allowing them to pose ”what if” questions that the LMM translates into simulation parameters. They can also help
students **design experiments**, where students could describe an experimental setup in natural language, and the
LMM could help configure the virtual lab accordingly, or critique the proposed design for flaws. In terms of **ma-
nipulating variables and collecting data**, LMMs can allow for a wider range of variable manipulation than pre-set
simulations, and can assist in organizing and presenting the AI-generated data or simulation outcomes in various
formats like tables or graphs.[10] Finally, students can **analyze results and draw conclusions** by discussing simula-
tion outcomes with the LMM, which might offer interpretations (to be critically evaluated) or help identify patterns
in the data.

Interaction with LMM-driven simulations can also cultivate computational thinking skills.[70] If students are in-
volved in aspects of prompting the LMM for simulation setup, interpreting AI-generated code that drives the simula-
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tion, or understanding how the LMM models a particular phenomenon, they are engaging with core computational
concepts such as abstraction, modeling, and algorithmic thinking.

4.4 Pedagogical Strategies for AI-Driven Virtual Labs: From Scaffolding to Learning from Failure

Effective use of LMM-powered virtual labs requires thoughtful pedagogical strategies. A key strategy is **Scaffolding
Interactions**. AI-based Interactive Scaffolding (AIIS) can be particularly valuable.[72] LMMs can provide different
types of scaffolding during virtual experiments, such as conceptual scaffolding to help students understand underlying
principles, metacognitive scaffolding to prompt reflection, procedural scaffolding for guidance, and strategic scaf-
folding to suggest problem-solving approaches. LMMs can offer hints, ask guiding questions, and provide adaptive
feedback tailored to student actions within the virtual lab. Another important strategy is **Learning from ”Imperfect”
Simulations**. The ”black-box” nature of some LMMs, if unaddressed, could hinder genuine scientific understand-
ing. LLMPhy, for example, is described as a ”black-box optimization framework”.[58] If students do not understand
why an LMM makes certain choices in setting up or running a simulation, the experience risks becoming a ”magic
show” rather than a scientific investigation. Therefore, pedagogical approaches must emphasize ”opening the black
box” or, at minimum, critically probing its outputs and behaviors. The imperfections or unexpected behaviors of
AI-driven simulations can be leveraged as powerful teachable moments.[38] When a simulation behaves unexpectedly
or produces an ”incorrect” result, it provides an opportunity for students to engage in debugging, critical analysis,
and a deeper exploration of the underlying models.[74] This process of identifying and rectifying errors mirrors
authentic scientific practice. Finally, the **Teacher’s Role as Orchestrator** becomes crucial. In LMM-integrated
classrooms, the teacher’s role shifts from being a primary content deliverer to that of a facilitator of learning experi-
ences.[67] Teachers guide students in their interactions with LMM-powered virtual labs, pose critical questions, help
students make sense of complex simulation outputs, and ensure that the technology is used to deepen understanding
rather than as a shortcut. Pedagogical models for GenAI in virtual labs emphasize personalized learning paths and
the provision of real-time feedback, with the teacher overseeing and augmenting these AI-driven processes.[66]

LMM-powered virtual labs could uniquely bridge the gap between theoretical understanding and practical ex-
perimentation by allowing students to seamlessly move between conceptual explanations and their simulated mani-
festations. A student could ask, ”What happens if I double the concentration of this reactant?” and not only observe
the change in a simulated chemical reaction but also receive an LMM-generated explanation of why that change
occurred, dynamically linking theoretical principles to observable (simulated) outcomes.

The table below provides concrete examples of LMM applications in visual explanations and virtual experiments:

5 Assessment and Evaluation in LMM-Integrated STEM Learning Environments

The integration of LMMs into STEM education necessitates a significant rethinking of assessment and evaluation
practices. Traditional methods may prove inadequate when students have access to powerful AI tools capable of
generating sophisticated outputs. New frameworks and approaches are emerging that focus on assessing deeper
understanding, critical thinking, the process of human-AI collaboration, and metacognitive skills.

5.1 Assessing Student Understanding and Inquiry Skills with AI-Generated Content and Simulations

A primary challenge is ensuring the authenticity of student work when LMMs can produce plausible text, code,
visuals, and even simulate experimental results.[78] Assessment strategies must therefore evolve to measure genuine
student learning and inquiry skills rather than merely the ability to prompt an AI.

The FACT (Fundamental, Applied, Conceptual, critical Thinking) Assessment Framework offers a balanced ap-
proach.[80] Implemented in an Environmental Data Science course, FACT integrates assessments conducted without
AI assistance to build and evaluate fundamental coding skills, alongside AI-assisted assignments and projects where
students engage with authentic, complex tasks. This dual approach allows educators to gauge foundational knowl-
edge separately from the ability to leverage AI for advanced applications. The study found that AI tools, when
coupled with appropriate guidance, improved student performance and enabled them to tackle more complex, real-
world problems.[80] This suggests that assessment should not only permit but strategically incorporate AI use for
certain tasks, while reserving others for unaided demonstration of core competencies.

LMMs themselves can be used to generate diverse assessment formats, such as multiple-choice questions or analo-
gies, and can even assist in evaluating student presentations based on clarity, understanding, and organization.[78]
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Table 3: Exemplar LMM Applications for Visual Explanations and Virtual Experiments in STEM
Application/
Framework

LMM(s)Used (if
specified)

Core Capability STEMDiscipline Ex-
ample

Key Educational Benefit

Visualizing
Thought

GPT-4o Generating conceptual dia-
grams (e.g., Matplotlib code)
to aid reasoning and plan-
ning.

Physics (Blocksworld
planning), general
problem-solving.

Enhances reasoning accu-
racy, makes AI’s intermedi-
ate steps transparent.

Q-SIT Various LMMs Image quality scoring and
interpretation; learning
low-level visual interpreta-
tion from instruction-based
prompts.

General image analy-
sis, potentially applica-
ble to scientific image
interpretation (e.g.,
microscopy, medical
imaging).

Foundation for LMMs to
emulate human-like visual
assessment, crucial for inter-
preting scientific visual data.

SciVerse Bench-
mark

Various LMMs Assessing LMMs’ ability to
understand multimodal sci-
entific problems (text, dia-
grams).

Physics, Chemistry,
Biology problems in-
volving diagrams and
textual information.

Identifies LMM
strengths/weaknesses in
scientific knowledge com-
prehension and visual
perception (e.g., OCR in
diagrams).

ChemDFM-X ChemDFM
(LLM decoder)

Cross-modal dialogue for
chemistry; handles molec-
ular graphs, conformations,
spectra, images.

Chemistry (molecular
property prediction,
reaction completion,
spectra interpretation).

Enables domain-specific,
multimodal chemical simu-
lations and problem-solving;
integrates diverse chemical
data types.

LLMPhy OpenAI o1-mini
(example)

Zero-shot physical reason-
ing; LMM generates code to
estimate physical parameters
by interacting with a physics
engine.

Physics (predicting dy-
namics of objects on a
tray under impact, e.g.,
TraySim dataset).

Allows LMMs to reason
about and configure physics
simulations, bridging sym-
bolic AI with physical world
models.

However, the critical element is the design of these assessments.
Designing effective rubrics for AI-assisted project-based learning in STEM is crucial.[81] Such rubrics should

de-emphasize the polish of the final product and instead focus on criteria such as the **creativity and originality** in
the student’s approach; the **process and iteration**, including how effectively the student used scaffolding steps and
incorporated feedback; the depth of the student’s **personal reflection and real-world application**; and evidence
of the student’s **critical use of AI**, showing they evaluated AI-generated content and demonstrated their own
understanding.

Ultimately, assessment in the age of LMMs must shift focus. Since LMMs can often generate the products of
learning (essays, code, diagrams), evaluation must increasingly target the processes involved: critical thinking, effec-
tive prompt engineering, the ability to critically evaluate AI outputs, ethical reasoning, and metacognitive awareness
demonstrated during the human-AI interaction. The ”how” and ”why” of using the LMM become as, if not more,
important than the ”what” that is produced.

5.2 Frameworks for Evaluating Human-AI Collaboration in Scientific Tasks

As LMMs become collaborative partners in learning, frameworks are needed to evaluate the quality and effectiveness
of this human-AI interaction.

The Human-Centric AI-First (HCAIF) Framework emphasizes attribution and reflection as key assessment com-
ponents.[33] Students are required to clearly document how and where they used GenAI in their work. This trans-
parency allows educators to evaluate not only the final output but also the student’s problem-solving capability,
critical thinking, and proficiency in co-creating with AI tools. Furthermore, students maintain journals to analyze
and reflect on their learning process, the effectiveness of GenAI, its limitations, and its impact on their work. Within
HCAIF, AI is utilized for personalized learning, generating feedback, and supporting competency development,
while summative assessment considers both the learning process and outcome quality.

The Comprehensive AI Assessment Framework (CAIAF), an evolution of the AI Assessment Scale (AIAS), aims
to ethically integrate AI into educational assessments.[83] It provides clear distinctions based on educational levels
and incorporates advanced AI capabilities like real-time interactions and personalized assistance. CAIAF promotes
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responsible AI use by emphasizing ethical principles and offering adaptable strategies, guiding educators beyond
simple restrictions towards fostering innovation and academic integrity.

These frameworks underscore the importance of assessing the process of inquiry and collaboration with AI, rather
than solely the end product.[79] This might involve evaluating the quality of student prompts, their ability to iterate
on AI suggestions, or their justification for accepting or rejecting AI-generated information.

5.3 The Role of Student Metacognition in Navigating LMM Interactions

Metacognition—the ability to understand and regulate one’s own learning processes, including self-awareness, plan-
ning, monitoring, and evaluation—is crucial for effective learning, particularly when interacting with AI tools.[84]

AI can potentially support the development of these skills by providing structured feedback, prompting reflection,
and offering insights into learning patterns.

However, a significant challenge emerges from research on the ”metacognitive disconnect”.[85] Studies indicate
that while using AI can improve task performance, users often overestimate their own contribution and understand-
ing, leading to low metacognitive accuracy.[85] Participants in one study using AI for logical reasoning tasks showed
improved performance but also a large overestimation of that performance. Paradoxically, higher self-reported AI
literacy sometimes correlated with less accurate self-assessment—participants were more confident yet less precise in
their performance evaluations.[85]

This metacognitive disconnect poses a substantial threat to genuine learning. If students believe they understand
a concept better simply because an AI helped them produce a high-quality output, they may not engage in the deeper
cognitive processing necessary for robust learning, nor recognize their actual learning gaps. This could lead to AI
inadvertently masking these gaps.

Therefore, pedagogical strategies must explicitly aim to enhance metacognitive monitoring and critical self-
reflection when students use LMMs. This might involve tasks that require students to articulate their reasoning
before consulting an AI, to compare their own solutions with AI-generated ones and explain discrepancies, or to
reflect on the specific ways AI influenced their thinking and final product. Effective assessment in this context will
require a ”triangulation” approach: combining student self-reflections (as in HCAIF[33]), AI-supported tasks (as in
FACT[80]), and AI-free tasks (also in FACT[80]) to obtain a more holistic and accurate view of student competence
and understanding.

6 Navigating Ethical Dilemmas and Practical Challenges

The integration of LMMs into STEM education, while promising, is fraught with ethical dilemmas and practical
challenges that demand careful consideration and proactive strategies. These range from ensuring the scientific va-
lidity of AI-generated content to addressing bias, maintaining academic integrity, and managing cognitive impacts.

6.1 Upholding Scientific Rigor: Verification of LMM-Generated Explanations and Simulations

A paramount concern in STEM is the accuracy and reliability of information. LMMs, despite their sophistication,
can generate explanations, visualizations, and simulation outputs that are inaccurate, based on ”hallucinated” data, or
subtly biased.[8] They may cite non-existent sources or misinterpret scientific principles.[51] The findings from the
SciVerse benchmark, which revealed LMMs’ difficulties with accurate visual interpretation and OCR in scientific
diagrams[6], underscore this challenge. Similarly, preservice chemistry teachers found AI-generated visuals often
lacked scientific rigor despite their aesthetic appeal.[46]

This necessitates a strong emphasis on verification. Students and educators must be equipped with the skills
and tools to critically evaluate and fact-check AI-generated scientific content, cross-referencing it with established,
credible sources. This challenge of verification, however, can be reframed as a pedagogical opportunity. The process
of scrutinizing AI outputs can itself teach critical thinking, information literacy, and the nature of scientific evidence
in the digital age. When students are tasked with identifying flaws in an AI-generated explanation or simulation,
they are forced to engage more deeply with the underlying scientific concepts and the criteria for trustworthy claims.

6.2 Addressing Algorithmic Bias, Equity, and Accessibility in LMM Deployment

LMMs learn from vast datasets, which often reflect existing societal biases related to gender, race, culture, and other
demographic factors.[86] If these biases are embedded in the LMMs, they can be perpetuated or even amplified in
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educational content. In STEM, this could manifest as stereotypical representations of scientists, biased interpretations
of data related to certain populations, or inequitable performance of AI tools for different student groups.[49] Address-
ing algorithmic bias is crucial not only for fairness but also for scientific validity, as biased LMMs could misrepresent
scientific phenomena or steer inquiry in skewed directions.

Equity issues also extend to access. The most powerful LMMs are often proprietary and may require subscrip-
tions, creating a divide between students who can afford them and those who rely on free, potentially less capable,
versions.[86] Differences in digital literacy can further exacerbate these inequities. Educational institutions must strive
to provide equitable access to LMM tools and the training needed to use them effectively, ensuring that LMM inte-
gration does not widen existing educational disparities.

6.3 Maintaining Academic Integrity with Advanced LMM Capabilities

The ability of LMMs to generate human-like text, code, and other outputs raises significant concerns about academic
integrity.[86] The risk of students submitting AI-generated work as their own, or using AI to complete assignments
without genuine understanding, is a major challenge for educators.

Addressing this requires a multi-pronged approach. Clear institutional policies regarding the permissible and
ethical use of AI in academic work are essential, emphasizing transparent disclosure of AI assistance and the im-
portance of original thought.[86] Assessment methods may need to be redesigned to be ”AI-resistant,” focusing on
tasks that require higher-order thinking, in-class performance, or process-oriented evaluation rather than solely on
final products that AI can easily generate.[88] As discussed previously, shifting the focus of assessment to the student’s
process of interaction with AI, their critical evaluation of its outputs, and their ability to synthesize information from
multiple sources (including AI) can help maintain academic integrity.

6.4 Managing Cognitive Load and Preventing Over-Reliance

While LMMs can assist in complex tasks and potentially reduce certain aspects of cognitive load, there is a significant
risk of ”cognitive offloading,” where students become overly dependent on AI tools to do the thinking for them.[86]

This over-reliance can hinder the development of essential cognitive skills, critical thinking, and deep conceptual
understanding. The ”cognitive ease at a cost” phenomenon, where LLMs make tasks feel easier but lead to shallower
processing and poorer reasoning[18], highlights this danger. If students consistently use LMMs as a crutch rather
than a tool for augmentation, their own problem-solving and analytical abilities may atrophy.

Pedagogical strategies must be designed to encourage active engagement and critical thinking even when LMMs
are used. This involves structuring tasks so that AI assists with certain components (e.g., data processing, initial
drafting) while requiring students to perform the core intellectual work (e.g., hypothesis formulation, critical analysis,
synthesis of ideas). The tension between leveraging LMMs for efficiency and accessibility versus ensuring deep
learning and skill development represents a central ethical and pedagogical balancing act for educators. The goal is
to find a ”sweet spot” where LMMs scaffold and augment human cognition and effort, rather than supplanting them.

7 Future Trajectories: Research and Practice for LMMs in STEM Education

The rapid advancement of LMMs necessitates a forward-looking perspective on their role in STEM education. Fu-
ture developments will likely focus on empowering educators, designing more sophisticated AI-driven learning en-
vironments, reimagining the scientific method through human-AI collaboration, and addressing grand challenges
in research.

7.1 Empowering Educators: Professional Development and Classroom Orchestration Strategies

For LMMs to be effectively integrated into STEM classrooms, educators must be equipped with the necessary knowl-
edge and skills. This requires robust professional development (PD) programs that go beyond basic tool usage, focus-
ing on LMM capabilities, inherent limitations, pedagogical implications, and ethical considerations.[67] The Shark
AI project, which provides PD for middle school teachers on using AI in paleontology, serves as an example of
how teachers can be supported in implementing AI-infused curricula.[93] Such PD should emphasize peer-to-peer
learning and address common misconceptions about AI.
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Table 4: Ethical Challenges and Proposed Mitigation Strategies for LMMs in STEM Education
Ethical Chal-
lenge

Description of Challenge in STEM
Context

Proposed Mitigation Strategies (Pedagogical, Tech-
nical, Policy)

Scientific Inac-
curacy/ Halluci-
nations

LMMs generating factually incorrect
scientific explanations, flawed diagrams,
or unrealistic simulation outputs; citing
non-existent sources.

Pedagogical: Teach critical evaluation, source verifica-
tion, cross-referencing. Use errors as learning opportuni-
ties. Technical: Develop domain-specific LMMs with cu-
rated STEM knowledge. Implement better fact-checking
mechanisms within LMMs. Policy: Guidelines for vali-
dating AI-generated content.

Algorithmic Bias LMMs perpetuating gender, racial, or
cultural biases in STEM representations
(e.g., images of scientists, medical data
interpretation), leading to skewed un-
derstanding or inequity.

Pedagogical: Educate on AI bias, encourage critical analy-
sis of AI outputs for bias. Technical: Use diverse and rep-
resentative training data. Implement bias detection and
mitigation algorithms. Policy: Promote development of
fair and unbiased AI tools for education.

Academic Mis-
conduct

Students submitting AI-generated work
as their own; plagiarism; lack of genuine
understanding despite polished outputs.

Pedagogical: Focus on process over product in assess-
ments. Teach ethical AI use and proper attribution. De-
sign AI-resistant assignments. Technical: Improve AI-
detection tools (though with limitations). Policy: Clear
institutional policies on AI use, academic integrity, and
consequences of misuse.

Cognitive
Over-reliance/
Deskilling

Students becoming overly dependent on
LMMs, leading to reduced critical think-
ing, problem-solving skills, and shal-
lower learning (”cognitive offloading”).

Pedagogical: Design tasks requiring active student en-
gagement and critical thinking beyond AI capabilities.
Teach metacognitive strategies for AI use. Balance AI-
assisted and AI-free tasks. Policy: Emphasize development
of core cognitive skills alongside AI literacy.

Access and Eq-
uity

Disparities in access to powerful LMMs
(paid vs. free), necessary hardware, in-
ternet connectivity, and digital literacy,
potentially widening educational gaps.

Pedagogical: Provide training for all students on available
tools. Technical: Promote open-source LMM develop-
ment. Design tools requiring less computational power.
Policy: Ensure equitable access to technology and AI tools
in educational institutions. Fund digital literacy programs.

Data Privacy and
Security

Collection and use of student data by
LMMs, raising concerns about privacy,
surveillance, and potential misuse of sen-
sitive information.

Technical: Use LMMs with strong data protection fea-
tures. Anonymize data where possible. Policy: Adherence
to data privacy regulations (e.g., GDPR, FERPA). Trans-
parent institutional policies on data handling by AI tools.
Obtain informed consent.

The role of the teacher is evolving into that of a ”classroom orchestrator”.[76] Instead of being the sole source
of information, teachers will facilitate and guide student interactions with LMMs, help students critically interpret
AI-generated outputs, and ensure that technology serves pedagogical goals. This involves strategies like using AI as
a debate partner, an assistant for mock interviews, or a personalized study buddy, always with an emphasis on human
review, bias checking, and contextualization of AI-generated content.[76]

7.2 Designing Next-Generation AI-Driven Learning Environments for Deeper Scientific Understanding

Future learning environments will likely see LMMs embedded more deeply into core curricula, aiming to build
AI fluency for all students, regardless of their major.[95] This involves moving beyond standalone AI tools to in-
tegrated platforms that support diverse learning activities. Emerging tools like Curipod (for interactive lessons),
MagicSchool.ai (for teacher assistance), Labster (for virtual labs), Tynker with AI (for coding), and Exploratorium
AI Labs exemplify this trend towards more comprehensive AI-driven learning environments.[38]

A key direction in designing these environments is to prioritize open-ended, creative problem-solving and stu-
dent agency, rather than relying on rigid, AI-tutoring systems that dictate the learning path.[96] LMMs should func-
tion more like collaborative peers or sophisticated reference materials that students can use on their own terms to
explore, create, and discover. The most effective future LMM integration will likely involve domain-specific LMMs
that are fine-tuned with pedagogical knowledge, rather than relying solely on general-purpose LMMs for specialized
STEM education tasks. General LMMs often lack the conceptual depth and accuracy required for specific STEM
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fields.[97] Domain-specific models, such as ChemDFM-X for chemistry[56], show greater promise. Integrating es-
tablished pedagogical frameworks directly into these models would represent a significant advancement, ensuring
that the AI not only understands the content but also how to present and interact with it in a pedagogically effective
manner.

7.3 The Evolving Scientific Method: Long-Term Vision for Human-AI Partnership in Discovery and
Learning

LMMs have the potential to transform not only how science is learned but also how it is done. The long-term
vision involves AI as a collaborative partner, augmenting human capabilities in scientific discovery, data analysis,
hypothesis generation, and even the articulation of scientific findings.[96] LMMs could assist researchers and students
in identifying patterns in large datasets, suggesting novel research questions, or drafting initial sections of scientific
papers.[100]

This human-AI partnership in science implies a fundamental shift in scientific training. Students will need to learn
not just the principles of science, but also how to conduct scientific inquiry collaboratively with AI. This requires
new curricula focused on effective human-AI scientific workflows, including skills in advanced prompt engineering,
critical evaluation of AI-generated hypotheses or analyses, and ethical considerations of AI in research. For such
collaboration to be fruitful, there is a need for shared understanding and contextual awareness between humans and
AI agents, where AI can interpret human inputs effectively and humans can understand and act upon AI outputs.[100]

7.4 Grand Challenges and Priority Research Areas

Several grand challenges and priority research areas must be addressed to realize the full potential of LMMs in STEM
education. A major challenge is ensuring the accuracy and depth of generated content, as general-purpose LMMs
often lack conceptual rigor, necessitating the development of domain-specific models with integrated pedagogical
frameworks.[97] Further research is needed to understand the impact on higher-order thinking skills to ensure LMMs
augment, rather than diminish, critical analysis and creativity. The assessment validity of AI-assisted methods re-
quires significant investigation to accurately measure student learning.[102] Overcoming issues of equity and access to
powerful LMMs and the necessary hardware remains a significant hurdle.[97] The epistemology of AI-driven science
is another critical area, as students need to understand the nature of AI-generated knowledge.[32] Finally, a signif-
icant grand challenge lies in explainability and transparency, as developing LMMs that can explain their reasoning
and articulate uncertainties is crucial for fostering trust and enabling critical evaluation by learners, moving beyond
problematic ”black box” models.[107]

Addressing these challenges will require interdisciplinary collaboration among AI researchers, STEM educators,
learning scientists, and policymakers.

8 Conclusion

8.1 Recapitulation of LMMs’ Transformative Potential in STEM Education

Large Multimodal Models stand at the cusp of significantly reshaping STEM education. Their capacity to process
and generate information across diverse modalities—text, image, code, and simulation data—offers unprecedented
opportunities. This review has highlighted how LMMs can enhance visual explanations by creating dynamic, inter-
active, and contextually rich scientific visualizations, therebymaking abstract concepts more accessible. Furthermore,
LMMs show considerable promise in powering sophisticated virtual experiments, allowing for more open-ended,
inquiry-driven, and personalized laboratory experiences that can foster critical scientific skills. From generating
conceptual diagrams that elucidate reasoning processes to enabling complex simulations in fields like chemistry and
physics, LMMs offer tools that can deepen student engagement and understanding in STEM.

8.2 Key Implications for Educational Stakeholders

The integration of LMMs carries profound implications for all stakeholders in the educational ecosystem. For ed-
ucators, there is an urgent need to develop new pedagogical skills, adapt teaching methodologies, and cultivate a
keen awareness of the ethical dimensions of AI use, shifting their role towards that of a facilitator and orchestrator.
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For students, LMMs present opportunities for more engaging and personalized learning but also pose risks of over-
reliance and the imperative to develop robust critical AI literacy. For **developers**, the onus is on creating LMM
tools that are scientifically accurate, free from harmful biases, and designed with sound pedagogical principles and
transparency. Finally, for policymakers, clear guidelines for the ethical and effective use of LMMs are needed, along
with investment in research, teacher professional development, and initiatives to ensure equitable access.

Table 5: Leading Journals for Research on AI in STEM Education
Journal Name Scope Relevant to AI/STEM/EdTech Metric (h5-index,

etc.)

Computers & Education Digital technology to enhance education, pedagogical uses of
digital technology, learning and teaching implications. High
encouragement for empirical research on diversity, equity, and
inclusion.

154

Education and Information
Technologies

Educational technologies, information technologies in educa-
tion.

112

British Journal of Educa-
tional Technology (BJET)

Theory, applications, and development of learning technology,
ICT in education and training.

101

Interactive Learning Envi-
ronments

Design and use of interactive learning environments, human-
computer interaction in education.

85

Computer Assisted Lan-
guage Learning

AI in language learning, technology-enhanced language teach-
ing. (Relevant for AI pedagogy aspects).

79

International Journal of
Educational Technology in
Higher Education

Technology in higher education, innovative uses of EdTech. 77

Educational Technology
Research and Development
(ETR&D)

Research and development in educational technology, instruc-
tional design, learning sciences.

72

Journal of Computer Assisted
Learning (JCAL)

Computer-assisted learning, collaborative learning, AI in edu-
cation, open and networked learning.

63

Computers and Education:
Artificial Intelligence

AI applications in education, intelligent tutoring systems, learn-
ing analytics, ethical issues of AI in education.

57

Journal of Writing Research
(JoWR)

Cognitive/social processes of writing, learning/teaching writ-
ing, technology in writing. (Relevant for AI in scientific com-
munication).

Top 10% Education
(Scopus)

Computers and Composi-
tion: An International Jour-
nal

Computers in writing classes, programs, research; digital writ-
ing, electronic literacy, multimedia composition, technology in
writing instruction. (Relevant for multimodal aspects and scien-
tific writing with AI).

N/A (Impactful in its
field)

Educational Technology &
Society

Educational technology, active/experiential/cooperative learn-
ing, teaching methods, multimedia, AI in education. Open ac-
cess.

2.633 (2021 Impact
Factor)

The successful integration of LMMs into STEM education is not a purely technological endeavor but a complex
socio-technical challenge. It demands deliberate, ethical, and pedagogically informed choices from all involved par-
ties. Passive adoption of these powerful tools is insufficient; active, critical engagement is required to navigate their
potential and pitfalls.

8.3 A Call for Responsible Innovation and Collaborative Research

The journey of integrating LMMs into STEM education is just beginning. While the potential is immense, so are
the unknowns and the responsibilities. There is a pressing need for sustained, rigorous research into the efficacy,
equity, and ethical implications of these technologies in diverse STEM learning contexts. This research must be
interdisciplinary, bringing together AI developers, STEM experts, learning scientists, ethicists, and classroom edu-
cators.
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Collaboration is key to ensuring that LMMs are developed and deployed in ways that genuinely augment human
intellect, foster deep conceptual understanding, and prepare students for a future where AI is an integral part of
scientific inquiry and professional practice. The ultimate measure of LMMs’ success in STEM education will not be
their technical sophistication alone, but their ability to cultivate critical thinking, creativity, problem-solving skills,
and a robust epistemic understanding of science in an increasingly AI-mediated world. These higher-order goals
must remain central as we navigate the transformative landscape of LMMs in education.
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