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Abstract

Generative Al severs the link between polished products and genuine learning, exposing the limits of outcome-
only assessment. This paper advances a socio-technical framework for Al-enabled process-based assessment
(PBA) that reframes evaluation as continuous diagnosis embedded in learning. A five-stage pipeline—task —
trace > model — feedback — validation—aligns pedagogical intent with instrumentation of interaction, dis-
course, and multimodal evidence, and treats the human Al pair as the unit of analysis within a distributed
cognition perspective. Methodologically, the framework maps trace types to appropriate model families (e.g.,
sequential pattern mining, HMMs, NLP) while requiring explainability so insights are actionable. For practice,
it specifies teacher Al orchestration roles that preserve human judgment and defines governance protocols for
privacy, fairness, transparency, and cultural responsiveness. The result is a principled route to assess complex
problem solving with integrity in the age of generative AL

Keywords Process-Based Assessment; Distributed Cognition; Digital Traces; Explainable Al; Teacher AI Orches-
tration

1 Introduction: The Assessment Crisis and the Process-Based Imperative

1.1 The Collapse of Outcome-Based Assessment in the Generative Al Era

Complex problem solving (CPS) is widely recognized as a cornerstone of 21st-century education, essential for navi-
gating the ambiguous, dynamic, and interconnected challenges of modern life. Its significance is formally acknowl-
edged through its inclusion in large-scale international evaluations, such as the OECD’s Programme for International
Student Assessment (PISA), which defines it as a critical competency for future readiness. Unlike well-structured
problems with clear solution paths, CPS tasks are often ill-defined, demanding iterative strategies, metacognitive
regulation, and effective collaboration to achieve resolution.

Despite this consensus, the predominant assessment paradigm, Outcome-Based Assessment (OBA), remains fun-
damentally misaligned with the nature of CPS. OBA focuses on the final product—a test score, a project deliverable,
or the correctness of a final submission—while treating the rich, dynamic process of exploration, strategy formu-
lation, and adaptation as an invisible “black box”. This methodological gap has always limited educators ability to
provide the nuanced, formative feedback required to develop these sophisticated skills. However, the recent and rapid
proliferation of generative Al has transformed this long-standing limitation into an existential crisis for assessment
integrity.

Generative Al tools can produce fluent, sophisticated, and often correct final products with minimal authentic
student effort, fundamentally severing the link between the observable outcome and the student’s underlying knowl-
edge or skill. When a final essay, a piece of code, or a project report can no longer be trusted as a reliable signal
of learning, the validity of OBA collapses. This technological disruption has created what many have termed an
“assessment crisis,” forcing a re-evaluation of the very foundations of educational measurement. More profoundly,
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it has inverted the value proposition of assessment. Previously, the product was the trusted signal and the process
was the noisy, hard-to-measure context. In the current landscape, the product is potentially untrustworthy, making
the process the only remaining reliable signal of authentic student engagement, critical thinking, and learning. This
shift makes a transition to process-focused evaluation not merely a pedagogical improvement but a methodological
necessity for restoring validity and meaning to assessment. The initial reaction to this crisis, focused on detecting
Al-generated text and preserving academic integrity, addressed only a surface-level symptom. The deeper challenge
is not simply to prevent cheating, but to fundamentally rethink what constitutes valid evidence of learning when the
final artifact is no longer sufhcient.

1.2 The Methodological Necessity of Process-Based Assessment (PBA)

Process-Based Assessment (PBA) emerges as the necessary paradigm to address this crisis. Defined as an approach
that analyzes the how and why of student performance by examining the sequence of actions, decisions, and strategies
employed during a task, PBA makes the thinking process visible. This focus is deeply rooted in established learning
theories, from constructivism, which values the process as much as the product, to models of self-regulated learning
(SRL), which conceptualize learning as a cyclical process of goal-setting, strategy enactment, and adaptation, as
articulated in seminal frameworks like that of Winne and Hadwin.

For decades, the widespread adoption of PBA was hindered by practical constraints; manual analysis of process
data was too resource-intensive to be feasible at scale. Today, a powerful confluence of three factors has made scalable
PBA a reality. First is the urgent pedagogical need to assess the complex skills demanded by the 21st century, a need
now amplified by the validity challenges posed by generative Al Second is the ubiquitous availability of rich data, as
digital learning environments from virtual labs to collaborative platforms generate massive streams of “digital traces”
—fine-grained logs of student interactions. Third is the analytical capability of Artificial Intelligence, which provides
the computational power to analyze these vast and complex datasets, identify latent patterns, and infer cognitive and
affective states from behavior. This convergence creates an unprecedented opportunity to elevate PBA from a niche
research method to a sustainable and scalable educational practice, offering a robust response to the crisis catalyzed

by Al itself.

1.3 Argument and Contributions: A Principled Framework for Assessment Reimagined

This paper argues that Al-enabled PBA offers a transformative approach to assessing CPS, reframing assessment as
a continuous, diagnostic process embedded within learning activities themselves. This synthesis resolves the long-
standing tension between the pedagogical ideal of understanding the learning process and the practical constraints
of traditional assessment, providing a robust path forward in an Al-mediated world. To operationalize this vision,
this paper makes four key contributions.

First, a Socio-Technical Design Framework: We propose a principled five-stage pipeline (task—trace~model—feedback—validat
for developing trustworthy AI-PBA systems that prioritizes pedagogical goals over purely technical considerations.
This framework is explicitly grounded in socio-technical systems theory to ensure a holistic and responsible design
process.

Second, a Modernized Evidentiary Basis: We provide methodological guidance for capturing and abstracting
not only traditional digital traces (interaction, discourse, multimodal) but also the new, complex traces of human-Al
interaction. We argue for a theoretical shift in the unit of analysis from the individual student to the human-AI
distributed cognitive system.

Third, a Protocol for Trustworthy Implementation: We articulate an integrated approach to validity, robust-
ness, and ethical governance, featuring an operational compliance checklist and a novel focus on ensuring cultural
responsiveness in Al-based assessment, moving beyond narrow statistical definitions of fairness.

Fourth, a Vision for Human-AlI Orchestration: We present a practical model for the collaborative roles of Al and
human educators, positioning the teacher as a “classroom orchestrator” who leverages Al-driven insights to make
informed pedagogical decisions, thereby augmenting rather than replacing human expertise.

2 A Socio-Technical Framework for Principled AI-PBA Design

To move Al-enabled PBA from a collection of disparate methods to a principled and responsible practice, a system-
atic design framework is required. The five-stage pipeline proposed here is not merely a technical procedure but a
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socio-technical governance model. It is grounded in Socio-Technical Systems (STS) theory, which conceptualizes
any work system as comprising interdependent social and technical subsystems, arguing that system success can only
be achieved through their “joint optimization”. In the context of AI-PBA, the “social” subsystem encompasses ped-
agogical goals, classroom culture, teacher and student roles, and learning objectives, while the “technical” subsystem
includes the Al models, data infrastructure, and digital learning environment. The framework is explicitly designed
as a bulwark against “technological solutionism™—the tendency to develop an Al tool and then search for an edu-
cational problem to solve. By structuring the process with educational goals as the primary driver, it ensures that
Al serves pedagogy, not the other way around. Each stage represents a critical decision point where pedagogical
values, human factors, and ethical considerations are embedded, reframing the development of AI-PBA as an act of
responsible design from the outset.

2.1 The Five-Stage Design Pipeline: From Pedagogical Primacy to Integrated Validation

The proposed framework is a cyclical governance structure where each stage represents a point of deliberate inter-
weaving between the social and technical subsystems, operationalizing the principle of joint optimization.

2.1.1 Stage 1: Pedagogical Primacy in Task Design

The process begins not with data or algorithms, but with pedagogy. The design of the learning task is paramount,
as it must be sufficiently complex and open-ended to elicit the target CPS processes that are to be assessed. This
stage forces the social subsystem (pedagogy) to define the requirements for the technical system. Tasks should not
be arbitrary but grounded in established theoretical frameworks, such as the PISA 2015 model, which delineates
problem-solving processes like “exploring and understanding” and “planning and executing” alongside collaboration
processes like “establishing and maintaining shared understanding”. The task environment must be designed to afford
students opportunities to plan, experiment, make mistakes, and revise their strategies, as these behaviors constitute
the very evidence of learning that the system aims to capture.

2.1.2 Stage 2: Theory-Driven Trace Design and Instrumentation

Once the pedagogical task is defined, the digital environment must be instrumented to capture relevant evidence.
This stage involves a deliberate, theory-driven choice of which digital traces to collect. The decision is not to
capture everything possible, but to capture what is meaningful. If the goal is to assess self-regulation, traces related
to goal-setting tools, help-seeking behavior, and revision history are crucial. If assessing collaboration, discourse
data from chat logs is essential. This stage requires a careful mapping between the target psychological constructs
(e.g., planning) and their observable digital manifestations (e.g., use of a planning tool, creation of an outline before
writing). The choice of what data not to collect is as important as the choice of what to collect, representing a
foundational act of privacy governance within the design process.

2.1.3 Stage 3: Principled Selection of AI Model Families

The choice of an Al model is not an arbitrary technical decision but is dictated by the nature of the trace data and the
specific assessment question. The model must be fit for the pedagogical purpose. If the objective is to understand the
temporal evolution of student strategies, sequential models such as Sequential Pattern Mining (SPM), Hidden Markov
Models (HMMs), or Recurrent Neural Networks (RNNs) are appropriate choices. If the goal is to identify distinct,
emergent profiles of problem-solvers without prior labels (e.g., “systematic explorers” vs. “rapid guessers”), then
unsupervised clustering algorithms are more suitable. This principled selection ensures that the analytical tool aligns
with the educational goal, preventing the common pitfall of applying a technologically impressive but pedagogically
inappropriate model.

2.1.4 Stage 4: Bridging Analysis to Action via Feedback Channels

Analysis is meaningless without action. This stage focuses on translating the insights derived from the Al models into
feedback that can positively impact teaching and learning. This feedback can be delivered through various channels,
such as real-time, automated hints for students; diagnostic dashboards for teachers that highlight class-wide patterns
or individual struggles; or summative reports for learners and instructors that visualize strategic development over
time. This stage also involves defining “actuation rules™—the specific conditions under which feedback is triggered.
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For example, an RNN-based risk model might trigger an alert to a teacher only when a student’s predicted probability
of non-completion exceeds a threshold of 0.7 for two consecutive weeks, ensuring that interventions are timely but
not overwhelming.

2.1.5 Stage 5: Integrating Validation Hooks for Methodological Rigor

Validation cannot be an afterthought; it must be integrated throughout the design process. Each stage of the frame-
work should have explicit “validation hooks” to ensure the system’s methodological rigor and trustworthiness. For
Task Design (Stage 1), the hook is alignment with established theoretical constructs of CPS or SRL. For Trace De-
sign (Stage 2), it is ensuring the captured data are meaningful proxies for the intended cognitive processes, often
validated through think-aloud studies. For Model Selection (Stage 3), it involves comparing model outputs against
external criteria, such as the ratings of expert human educators. This final stage creates a crucial feedback loop where
the performance of the technical system is judged against the goals of the social system, turning the linear pipeline
into a continuous cycle of design, research, and refinement.

2.2 Resisting Technological Solutionism through Responsible Design

By embedding pedagogical goals, human factors, and ethical considerations at each decision point, this socio-
technical framework serves as a structured defense against technological solutionism. This approach contrasts sharply
with technology-first initiatives that often fail because they neglect the complex interdependencies of the educational
context. The framework mandates that technology be shaped by learning needs, not the other way around, posi-
tioning the development of AI-PBA systems as an act of responsible, human-centered innovation from its inception.
This ensures that the resulting systems are not only technically functional but also pedagogically sound, ethically
robust, and sustainable within real-world educational ecosystems.

3 The Evolving Evidentiary Basis: From Digital Traces to Distributed Cognition

The raw material for Al-enabled PBA is the digital trace data students leave as they interact with learning environ-
ments. A systematic approach to collecting and preparing this data is foundational to the validity of any subsequent
analysis. However, the nature of this evidence is evolving rapidly with the integration of generative Al, requiring a
theoretical and methodological shift in what constitutes “data” in learning analytics.

3.1 A Modernized Typology of Digital Evidence: Interaction, Discourse, and Multimodal Traces

Digital traces can be categorized into three main types, each offering a different lens on the learning process.

Interaction Traces: These are the most common form of digital trace and include logs of discrete user actions
within a digital environment. Examples include clickstreams, navigation paths, tool usage events (e.g., activating a
highlighter), code submissions and compilations in a programming environment, and system-generated events like
error messages.

Discourse Traces: This category encompasses all forms of textual and verbal data generated by students. It
includes chat logs and forum posts in collaborative settings, written explanations of problem-solving strategies, and,
in research contexts, transcribed think-aloud protocols where students verbalize their thoughts while performing a
task.

Multimodal Traces: Leveraging advances in sensor technology, Multimodal Learning Analytics (MMLA) in-
corporates data streams beyond keyboard and mouse interactions. This can include visual data from cameras (e.g.,
facial expressions, posture, eye-tracking), auditory data from microphones (e.g., prosodic features of speech), and
physiological data from wearable sensors (e.g., heart rate variability) to infer cognitive load, affect, and engagement.

The selection of which traces to collect involves a strategic compromise. The act of collecting the richest, most de-
tailed data—particularly multimodal data—can be invasive and may alter the process being measured, a phenomenon
known as the “observer effect.” Furthermore, a practical tension exists between data richness and scalability. Mul-
timodal data offers the most holistic view but is resource-intensive and raises significant privacy concerns, whereas
simpler log data is more scalable but may lack crucial contextual or affective information.
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3.2 The New Unit of Analysis: The Human-AI Distributed Cognitive System

The increasing use of generative Al tools by students introduces a novel and critical class of trace data that fun-
damentally alters the object of assessment. The digital record of learning is no longer solely a product of human
action but of a human-AlI dialogue. This necessitates a theoretical shift in the unit of analysis. We argue that with
the integration of generative Al, the student can no longer be modeled as an isolated cognitive actor. Instead, the
assessment must focus on the partnership.

To ground this shift, we introduce the theory of Distributed Cognition (DC). Originating in studies of complex,
technology-mediated work like aviation and navigation, DC posits that cognition is not an individual phenomenon
confined to the mind but is a process distributed across people, artifacts, and the environment. Knowledge and
cognitive processes are offloaded onto and shared among both human and non-human components of a system.
When a student collaborates with a generative Al they form such a system. The Al acts as an external memory, a
reasoning partner, and a content generator, fundamentally altering the cognitive processes involved in the task.

Therefore, the proper unit of analysis for PBA in the Al era is the human-AlI distributed cognitive system.
The boundary of the cognitive system being assessed expands to include the AL This reframes the central assessment
question from “What does the student know?” to “How does the student-Al system collaboratively build and validate
knowledge?”. This theoretical move has profound methodological implications: data collection must capture the
entire dialogic loop between human and Al as the fundamental unit of evidence, changing the very ontology of
“learning data.”

3.3 Methodological Implications for Capturing and Abstracting Human-AlI Interaction Logs

This theoretical shift requires new methods for capturing and making sense of evidence. The new class of data
—human-AlI interaction traces—includes prompt sequences, the iterative refinement of prompts, the selection and
revision of Al-generated outputs, and the full history of the interaction. Analyzing these traces is essential for assessing
a new suite of emerging competencies central to modern knowledge work, such as prompt engineering, critical
evaluation of Al outputs, and ethical integration of Al-generated content.

A central methodological challenge in working with any trace data is the “granularity dilemma”: raw logs are
often too fine-grained (e.g., individual mouse clicks) to be pedagogically meaningful, while overly coarse aggrega-
tions (e.g., total time spent) lose critical process details. The act of defining an “event” for analysis is thus an act of
theoretical commitment. To address this in the new context of human-Al interaction, we propose four prescriptive
rules for trace abstraction.

First, abstract to pedagogical moves. Low-level events should be aggregated into higher-level, semantically
meaningful actions. For instance, a sequence of text-editing events followed by a “submit” click in a virtual lab
could be abstracted into a single event: “Hypothesis Submitted”.

Second, use time-windowing. To manage high-frequency data, events can be defined based on activity within
discrete time windows, such as logging the primary activity type (e.g., “Reading,” “Problem-Solving”) within each
30-second interval.

Third, seed abstraction with human coding. For complex behaviors, human experts can manually code a subset of
the data according to a predefined rubric. These labels can then be used as ground truth to train a machine learning
classifier to automate the abstraction process for the entire dataset.

Fourth, abstract to human-Al interaction patterns. Specifically for generative Al traces, low-level logs of prompts
and responses should be abstracted into meaningful interaction patterns. For example, a single, copied-and-pasted
query could be labeled as a “Direct Prompting” event, whereas a sequence of queries that progressively refine the AI’s
output could be labeled as an “Iterative Refinement” event. Other patterns might include “Fact-Checking AI Output”
(indicated by a student running a search query related to an Als claim) or “Integrating Al Suggestion” (indicated by
a student copying text from the Al and pasting it into their work document). This allows the assessment to focus on
the quality of the student’s engagement with the Al not just the raw interaction log.

4 The Analytical Engine: A Methodological Toolkit for Educational Process Mining

Once digital traces have been collected and abstracted into meaningful event sequences, a range of Al methods can
be applied to extract patterns and insights. The selection of a method must align with the specific assessment goal,
the nature of the data, and a commitment to pedagogical utility.
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4.1 A Principled Approach to Model Selection: Aligning AI Methods with Pedagogical Goals

In educational assessment, the reasoning behind a judgment is often as crucial as the judgment itself. This creates
a fundamental tension between the predictive power of complex “black box” models and the interpretability of
simpler ones. This trade-off underscores the critical importance of Explainable Al (XAl) in making powerful models
transparent and actionable for educators and learners. An unexplainable prediction of “student at risk” is diagnostically
useless; an explainable prediction that identifies the specific sequence of behaviors contributing to that risk is the
foundation for effective intervention. Therefore, in this context, explainability is not merely a technical feature for
building trust but a pedagogical necessity for enabling formative feedback. The following methodologies represent
a toolkit for principled analysis, with a constant focus on the need for explainability.

Sequential Models (SPM, HMMs, RNNs/LSTMs): These models are ideal for understanding the temporal dy-
namics of learning. Sequential Pattern Mining (SPM) discovers frequently occurring ordered subsequences, which
can identify common learning strategies or compare pathways between novice and expert performers. Hidden
Markov Models (HMMs) infer a sequence of unobservable (hidden) cognitive or affective states (e.g., “Exploring,”
“Confused,” “Planning”) from observable student actions, allowing for the identification of unproductive learning
loops. Recurrent Neural Networks (RNNs) and their variant, Long Short-Term Memory (LSTM) networks, are
deep learning models that can capture complex, long-range dependencies in student interaction logs, making them
highly effective for early prediction of students at risk of failure.

Clustering: Unsupervised clustering algorithms group students based on feature vectors derived from their pro-
cess data (e.g., frequency of actions, time on task) without predefined labels. This data-driven approach can discover
emergent learner profiles or problem-solving archetypes, such as “Systematic Planners” versus “Trial-and-Error Tin-
kerers,” which can inform differentiated instruction.

Natural Language Processing (NLP): NLP techniques are essential for analyzing discourse traces from chat logs,
written explanations, or think-aloud protocols. Sophisticated models like BERT can be trained on human-coded
data to automatically classify student utterances according to a theoretical framework, enabling a scalable, nuanced
assessment of collaboration quality or reasoning processes that goes far beyond simple participation metrics.

Multimodal Learning Analytics (MMLA): MMLA integrates data from multiple channels (e.g., video, eye-tracking,
physiological sensors) with interaction logs to provide a holistic, synthesized assessment of constructs like engage-
ment, frustration, and cognitive load.

4.2 From Black Box to Glass Box: The Pedagogical Requirement for Explainable AI (XAI)

Solving the “black box” problem is essential for building trust and accountability in educational Al. Explainable Al
(XAI) techniques aim to make Al decisions understandable to humans, a feature that is paramount in educational
contexts. For a teacher to act on an RNN’s prediction that a student is “at-risk,” they need to know why. XAI
methods like SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable Model-agnostic Explanations)
can analyze a model’s decision and highlight which specific events in a student’s recent history contributed most
significantly to the high-risk prediction. Similarly, for NLP, attention visualization can highlight the specific words
or phrases in a text that a model focused on to make its classification. This transforms an opaque prediction into
a transparent, actionable diagnostic insight, turning the AI from an authority into a collaborative partner in the
pedagogical process. Table 1 provides a comparative overview of these methodologies, emphasizing their application
in CPS assessment and the critical need for explainability.

5 From Analytics to Action: Human-AlI Orchestration in the Classroom

The ultimate value of Al-enabled PBA lies not in the sophistication of its analytics, but in its ability to positively im-
pact teaching and learning. This requires translating analytical insights into concrete actions through well-designed
feedback loops, adaptive systems, and a clear conception of the collaborative roles of teachers and Al The effective
implementation of these systems, however, hinges on developing a new form of professional capacity among edu-
cators—an “Al literacy” focused not on coding, but on data interpretation, probabilistic reasoning, and pedagogical
translation.
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5.1 The Teacher as Classroom Orchestrator: A New Model for Professional Practice

Effective implementation of AI-PBA necessitates a clear division of labor, shifting the teacher’s role from being a
manual data processor to that of a “classroom orchestrator” who leverages Al-driven insights to make informed ped-
agogical decisions. This model positions the teacher not as a passive recipient of Al outputs, but as an active director
of a complex system of human and AT agents, preserving human pedagogical judgment as the central, authoritative
element in the classroom. This new role requires a specific skill set: the ability to interpret Al outputs, understand
their limitations and probabilistic nature, and translate data insights into pedagogically sound actions. This reconcep-
tualization of the teacher’s role represents a new theory of professional agency in Al-integrated classrooms, defining
a complementary, rather than competitive, relationship between human and artificial intelligence.

5.2 Protocols for Human-AI Adjudication and Escalation

A proposed orchestration protocol, drawing on established models of teacher-AlI collaboration, includes a clear di-
vision of labor and rules for interaction.

What the Al Decides: The Al system is best suited for automated, high-frequency, low-stakes tasks. This in-
cludes providing real-time, targeted hints based on a student’s immediate actions (“One Teach, One Assist” model),
offering path coaching by comparing a student’s strategy to common successful patterns discovered through SPM,
and flagging potential at-risk students based on predefined probability thresholds from an RNN model (“One Teach,
One Observe” model).

What the Teacher Adjudicates: The human educator retains authority over high-stakes, context-dependent, and
nuanced judgments. This includes interpreting complex or ambiguous patterns flagged by the Al, making final
grading decisions, designing personalized, human-centered interventions for small groups (“Differentiated Teach-
ing” model), and serving as the final arbiter in student appeals or disputes over an Al-generated assessment.

Escalation Rules: A clear protocol should govern the interaction between the Al and the teacher to ensure timely
action without creating alert fatigue. For example: “If an RNN flags a student as "at-risk’ with a probability greater
than 0.7 for two consecutive weeks, the system automatically adds an item to the teacher’s dashboard prompting a
one-on-one conference”. This rule automates the initial detection but leaves the crucial interpersonal intervention
to the human expert.

5.3 Engineering Explainable Feedback for Metacognitive Development

For feedback to be effective, it must be understandable and actionable. This requires translating the outputs of XAI
tools into clear, narrative explanations for both students and teachers. Instead of presenting a complex technical plot
from a SHAP analysis, the system should generate a plain-language summary.

Student-Facing Template: “The system suggested you might be stuck because your last five actions were all
attempts’ on the same sub-problem with no "help-seeking’ or example review’ actions in between. Exploring a hint
might reveal a new approach”.

Teacher-Facing Template: “Student A was flagged as at-risk’ this week. The key contributing factors from
the model were a 50% decrease in time spent on planning activities compared to their baseline and a sequence of
rapid, unsuccessful attempts on Problem 3, characteristic of a *guessing’ behavior pattern. A conversation focused on
planning strategies may be beneficial”.

By making the learning process visible and providing feedback on strategies rather than just outcomes, Al-
PBA can be a powerful tool for fostering metacognition and a growth mindset. Traditional OBA can inadvertently
reinforce a “fixed mindset” when students receive only a final score, which they may interpret as a judgment on
their innate ability. In contrast, when students receive specific, process-oriented feedback, they come to understand
that their methods and efforts can be analyzed and improved. This shifts their focus from “Am I smart?” to “What
strategy can I try next?”. AI-PBA tools that visualize progress over time and highlight specific improvements in
strategy can be powerful facilitators of this crucial psychological shift, encouraging students to view challenges as
learning opportunities rather than threats.
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6 Building Trustworthy Systems: An Expanded Protocol for Validity, Governance, and
Cultural Responsiveness

For Al-enabled PBA to be adopted responsibly and effectively, it must be built on a foundation of rigorous validation
and a steadfast commitment to ethical principles. This section moves beyond broad statements to propose an opera-
tional protocol for ensuring the trustworthiness of these systems. The pursuit of “fair” and “unbiased” Al in education
is often narrowly defined as achieving statistical parity across demographic groups within a single, usually Western,
cultural context. This overlooks a deeper, more insidious bias: the encoding of culturally specific pedagogical values
into a model’s core logic. A truly trustworthy AI-PBA system must therefore be designed not for universality, but
for adaptability and cultural attunement.

6.1 A Multi-Faceted Protocol for Validity and the “Meta-Validation” Challenge

Ensuring that an AI-PBA system measures what it purports to measure and performs reliably is paramount. A
multi-faceted validation protocol is essential.

Construct Validity: This addresses the question: “Are we truly measuring the intended psychological construct?”
Evidence can be gathered by correlating AI-PBA outputs with scores from established psychometric instruments
(e.g., self-regulation questionnaires) or through qualitative analysis of think-aloud protocols, which can be compared
to the strategies identified by the Al model.

Criterion Validity: This addresses the question: “How well do the Al’s assessments agree with an external bench-
mark?” The most common benchmark is the judgment of human experts. A panel of trained educators can rate
student process data, and these ratings are then compared to the Al model’s output using statistical measures of
agreement.

Generalizability and Robustness: A valid model must generalize across different tasks, student populations, and
time. This involves testing model performance on out-of-sample tasks and implementing protocols for ongoing
monitoring and periodic retraining to mitigate “model drift,” where performance degrades as new data no longer
resembles the original training data.

This process, however, reveals a deeper methodological challenge: the “meta-validation problem.” If the vali-
dation protocol relies on human experts as the “gold standard,” it begs the question of who validates the validators
and accounts for their potential inconsistencies or biases. This points toward a need for more sophisticated valida-
tion approaches, such as using multiple methods in triangulation and critically examining the reliability of our own
validation benchmarks.

6.2 Beyond Statistical Parity: The Imperative for Cultural Responsiveness in Assessment

Statistical fairness is a necessary but insufficient condition for ethical assessment. True fairness requires cultural re-
sponsiveness. Most Al in Education (AIED) systems are created by and for developed-world contexts, with Western
cultural and pedagogical perspectives embedded in their design. The very constructs being measured—what con-
stitutes “good” collaboration, “effective” help-seeking, or “productive” struggle—can be culturally dependent. For
example, a model trained to value direct, argumentative discourse as a sign of strong collaboration may unfairly
penalize students from cultures that value consensus-building and indirect communication. This means an AI-PBA
model could show perfect statistical fairness across racial or gender groups within one culture, yet still be deeply
biased against students from another.

Addressing this requires moving beyond purely technical debiasing to embrace participatory design method-
ologies. Participatory design involves the active collaboration of stakeholders—including teachers, students, and
community members—in the design process to ensure the resulting technology meets their needs and aligns with
their values. Co-designing assessment constructs and models with local communities can help ensure that the sys-
tem’s values align with the cultural context in which it is deployed. Furthermore, developing algorithmic impact
assessment tools that are explicitly responsive to diverse cultural values and local wisdom is a critical area for future
work.

6.3 An Operational Governance Framework for Ethical AI-PBA

Ethical considerations are not an add-on but a foundational requirement for AI-PBA. To move from abstract prin-
ciples to concrete practice, the operational compliance checklist in Table 2 can guide the design, deployment, and



52 Artificial Intelligence Education Studies  Volume 1, Issue 3, 2025

governance of these systems. This framework draws on established models for Al governance in higher education,
such as the GOVAIHEI model, which delineates key domains for oversight. It ensures that student privacy, fairness,
and transparency are protected through auditable actions.

Table 1: Ethics & Governance Compliance Checklist for AI-Enabled PBA

Category Checklist Item and Operational Requirement

Provide clear, plain-language consent forms detailing data types collected,
purpose, retention period, and opt-out procedures. Students and parents
must give informed consent before data collection begins.

Consent & Transparency

Implement student- and teacher-facing “Model Cards” that explain in ac-
cessible terms what a model predicts, its intended use, its known limitations,
and its performance on different subgroups.

Establish and enforce a protocol for pseudonymization of personally iden-
tifiable information (PII) at the point of data ingestion to protect student
privacy.

PII Handling & Security

Implement strict, role-based access controls to ensure that only authorized
personnel can access the level of data necessary for their legitimate function.

Conduct regular (e.g., per-term) audits of model performance across legally
protected and pedagogically relevant demographic subgroups (e.g., by race,

gender, socioeconomic status, prior knowledge level).

Bias & Fairness Audits

Utilize established group fairness metrics to detect algorithmic bias. Define
and document acceptable thresholds for performance disparities and a re-
mediation plan if these thresholds are exceeded.

KWT .. Ensure all automated assessments or high-stakes alerts are accompanied by
Explainability & Accountablht}f1 . . )
ah XAl-generated rationale that is presented in an understandable format

to the end-user (student or teacher).

Establish a clear, accessible, and well-documented process for students and
teachers to appeal or request a human review of an Al-generated assessment
or recommendation.

Implement a formal protocol for escalating high-risk flags or ambiguous

Human Oversight - . .
g model outputs to a human educator for review and final decision-making,.

Maintain an immutable log of all human overrides of Al recommendations.
This log should be periodically reviewed to identify potential systemic issues
with the Al model or the oversight process itself.

Conduct a participatory design process with target user communities to de-
fine key learning constructs and validate that they are culturally appropriate
before model development.

Cultural Responsiveness

Validate model performance and interpretability across different cultural
and linguistic groups before large-scale deployment to ensure it does not
unfairly penalize different communication or problem-solving styles.

7 Discussion and Conclusion: Charting the Future of Assessment

7.1 Synthesis: Assessment as a Continuous, Diagnostic, and Co-Constructed Process

This paper has argued that the convergence of pedagogical need, rich digital trace data, and sophisticated Al methods
—a trend now critically accelerated by the rise of generative Al—has created a pivotal moment for educational
assessment. The traditional, outcome-focused paradigm is no longer tenable for many tasks, making a shift to process-
based assessment a matter of necessity. We have proposed a principled, five-stage socio-technical design framework to
guide the development of Al-enabled PBA systems. By grounding the framework in socio-technical systems theory
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and the theory of distributed cognition, we have provided a robust theoretical foundation for this new paradigm.
By mapping specific AI methodologies to concrete intervention pathways and embedding protocols for validity and
ethical governance—including the novel imperative of cultural responsiveness—directly into the design process, this
framework provides an actionable blueprint for moving beyond the limitations of traditional evaluation.

7.2 Implications for Educational Practice, Policy, and Research

The implications of this shift are significant. For educational practice, AI-PBA offers teachers powerful diagnostic
tools to understand how their students learn, enabling more personalized, formative, and effective support. However,
this requires a new professional literacy focused on data interpretation and pedagogical translation. For educational
policy, it necessitates the development of robust governance frameworks, like the one proposed here, to ensure that
these powerful technologies are used in a manner that is fair, transparent, and equitable. For educational research,
it opens up new avenues for investigating the dynamics of learning at an unprecedented scale and level of detail,
allowing us to test learning theories in more authentic and complex environments, particularly through the lens of
human-AlI distributed cognitive systems.

7.3 Future Directions: The Co-Evolution of Learning, Assessment, and Al

Looking forward, several key challenges and opportunities will define the future of this field. A primary frontier is the
assessment of human-Al collaboration itself. As students increasingly use generative Al as a partner, the focus of PBA
must expand from assessing what a student knows to assessing how they build knowledge in partnership with an Al
cognitive tool. Second, as the field matures, it must confront the “meta-validation” problem, developing more robust
methods to ensure that the benchmarks we use to validate our systems are themselves valid and unbiased. Third, the
field must move toward cross-cultural adaptation, designing systems that are not monolithic but are culturally aware
and responsive to diverse learning contexts through participatory design.

Ultimately, the widespread adoption of robust AI-PBA could become a powerful driver for systemic curricular
and pedagogical reform. There is a well-known phenomenon in education: assessment drives instruction. For
decades, educators have advocated for teaching complex skills like iteration, strategic thinking, and collaboration,
but the assessment system, optimized for scalable OBA, has incentivized the teaching of more easily measurable
content knowledge. By creating a scalable and reliable method to measure the process of these complex skills, Al-
PBA fundamentally alters the incentive structure of the educational system. It makes teaching these skills a priority
because they can now be valued and assessed. In this way, AI-PBA can be a catalyst for fundamentally rethinking the
purpose and practice of assessment, aligning the entire educational enterprise more closely with the development of
the deep, transferable skills required in the 21st century. The path forward requires a symbiotic partnership between
educators, researchers, and technologists, working collaboratively to build assessment systems that are not only more
intelligent but also more equitable and humane.
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