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Abstract
This study advances a testable account of human-AI collaborative competence via the C²L-AI framework.
We integrate Activity Theory, Distributed Cognition, and sociomateriality to reconceptualize collaboration,
communication, and leadership alongside AI Interaction Competence. We operationalize constructs with an
Evidence-Centered Design (ECD) multimodal matrix spanning NLP, social/epistemic network analysis, and
VR behavioral analytics. To generate causal evidence, we propose a three-arm randomized controlled trial in a
multi-user VR leadership task comparing Explainable AI (XAI) feedback, standard feedback, and no feedback.
We hypothesize that XAI yields greater gains in leadership, communication, and AI interaction competence,
mediated by improvements in team cognitive architecture (shared mental models, transactive memory). The
work offers a unified theory, measurable indicators, and an empirical pathway for designing effective, ethical
human-AI learning systems.

Keywords Human-AI collaboration; Explainable AI; Virtual Reality; Leadership learning; Evidence-Centered De-
sign

1 Introduction

1.1 The AI Paradox and the Rise of Human-Centric Skills

The contemporary educational and professional landscape is undergoing a profound transformation driven by rapid
advancements in Artificial Intelligence (AI). As AI systems demonstrate increasing proficiency in executing complex
analytical processes and automating routine tasks, a seemingly counterintuitive phenomenon is emerging: a critical
surge in the demand for uniquely human skills. This ‘ “AI paradox” ‘ highlights that as machines becomemore capable,
the distinct abilities that differentiate human intelligence—such as nuanced social interaction, emotional depth, and
contextual understanding—gain unprecedented value. These competencies, prominently including collaboration,
communication, and leadership, are inherently relational, adaptable to dynamic contexts, and deeply rooted in the
human experience.

The growing emphasis on these human-centric skills is not merely a preference but an escalating economic
and societal imperative. Research from institutions such as the McKinsey Global Institute indicates that while the
demand for advanced IT and data analytics skills is rising, there is an equally pressing shortage of professionals
equipped with critical thinking, creativity, and the ability to teach and train others—skills that are difficult for current
AI to authentically replicate. This global skill shift compels educational systems to re-evaluate their priorities and
methodologies, moving beyond training individuals merely to use AI towards cultivating their capacity to work
synergisticallywith it, leveraging its computational power while amplifying their own distinctly human contributions.
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1.2 Beyond “Automation Complementarity” to “Human-AI Co-evolution”

The discourse surrounding AI’s impact often centers on a model of ‘ “automation complementarity,” ‘ where AI
automates certain tasks, thereby freeing humans to focus on more complex, creative, and interpersonal endeavors. In
this view, human skills and AI capabilities have a static, synergistic relationship. However, this model is insufficient to
capture the dynamic and transformative nature of the human-AI partnership. A more forward-looking perspective,
and the one adopted in this paper, is that of ‘ “human-AI co-evolution.” ‘

This co-evolutionary model posits a dynamic, reciprocal feedback loop. As humans interact with increasingly
sophisticated AI, their own skills are not just applied but are actively reshaped and refined. For instance, collaboration
strategies must adapt to incorporate AI agents as team members, and communication practices evolve to include
effective prompting and critical interpretation of AI-generated content. Concurrently, as developers and educators
gain a deeper understanding of these new human practices, they can design AI tools that better support and augment
these evolving capabilities. This reframes the educational challenge from a reactive, one-time upskilling event to the
cultivation of a continuous, adaptive capacity to learn and grow with AI. This vision elevates the research agenda
from mere adaptation to a proactive shaping of our collective future with intelligent technologies.

1.3 The Research Gap: The Need for an Integrated and Testable Framework

Despite widespread recognition of the importance of human skills in the AI era, a critical gap persists in the academic
literature: the lack of an integrated, theoretically-grounded, and empirically-testable framework that defines and
operationalizes the competencies required for effective human-AI collaboration. Existing research often treats ‘
“human skills” ‘ (e.g., collaboration) and ‘ “AI tools” ‘ as separate and distinct entities, failing to adequately theorize
their deep and constitutive entanglement in authentic learning and work contexts. Consequently, educators and
technology designers lack a coherent model to guide instructional design, assessment practices, and the development
of next-generation educational technologies. Without such a framework, efforts to cultivate these crucial skills risk
being ad-hoc, difficult to measure, and disconnected from the sociotechnical reality of modern work.

1.4 The Current Study and Its Contributions

This paper aims to fill this critical research gap by proposing and providing an initial validation pathway for a novel
theoretical model. It transforms a narrative exploration of the topic into a rigorous, evidence-based academic argu-
ment structured around three core contributions:

C1: A Novel Theoretical Framework. First, we propose the Collaborative Competence in Human-AI Learning
(C2L-AI) framework, a multi-dimensional sociotechnical model that integrates core human skills, AI Interaction
Competence, and team cognitive architecture to provide a comprehensive new lens for understanding human-AI
synergy.

C2: A Rigorous Assessment Methodology. Second, we operationalize this framework by presenting a multi-
modal assessment matrix grounded in Evidence-Centered Design (ECD). This matrix details how the framework’s abstract
constructs can be systematically measured using advanced learning analytics techniques, providing a blueprint for
future empirical research.

C3: Causal Empirical Evidence. Third, we provide an initial validation of the framework’s utility by designing
and proposing a randomized controlled trial that uses Virtual Reality (VR) and Explainable AI (XAI) to test the causal
effect of interpretable AI feedback on the acquisition of leadership skills in a collaborative context.

By integrating theory, methodology, and a plan for empirical validation, this paper seeks to move the field from
broad assertions about the importance of human skills to a scientifically grounded understanding of how to define,
measure, and cultivate them in the increasingly complex world of human-AI co-evolution.

2 Theoretical Framework: The C2L-AI Model

To build a framework capable of capturing the complexity of human-AI collaborative learning, it is necessary to
move beyond traditional learning models that locate cognition solely within the individual mind. The introduction
of a sophisticated AI agent into a learning group fundamentally alters the unit of analysis, demanding an integrated
theoretical perspective that can account for social, cultural, technical, and cognitive factors simultaneously. This
section synthesizes multiple theoretical lenses to construct a unified sociotechnical foundation upon which the C2L-
AI framework is built.
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2.1 Toward a Unified Sociotechnical Theory of Human-AI Learning

The proposed theoretical foundation is not a simple aggregation of existing theories but a nested, multi-level synthesis
where each theory addresses a different analytical challenge. Activity Theory provides the overarching structure of
the system, Distributed Cognition explains the cognitive processes within that structure, and Sociomateriality offers
the ontological stance that prevents an artificial separation of human and technical elements. This integrated approach
provides a powerful toolkit for analyzing human-AI collaboration with unprecedented depth.

2.1.1 Activity Theory (AT): A Macro-Analytic Framework

Activity Theory (AT), originating from the sociocultural psychology of Vygotsky and later expanded by Engeström,
provides a macro-level framework for analyzing the learning environment as a complete activity system. AT posits
that human action is goal-driven, tool-mediated, and unfolds within a collective, sociocultural context. Engeström’s
second-generation model identifies six core components: the Subject (the learner or group), the Object (the learn-
ing goal or motive), Mediating Artifacts (tools used to act on the object), Rules (norms governing the activity), the
Community (the social group sharing the object), and the Division of Labor (the distribution of tasks and power).

Within a human-AI learning context, this model offers a powerful analytic lens. The learning team is the Subject,
and their learning goal is the Object. Crucially, AI is conceptualized not as a passive tool but as a potent Mediating
Artifact that actively reshapes the entire system. The introduction of an AI agent can alter the Rules of engagement
(e.g., how information is sought), the interaction patterns of the Community, and, most importantly, the Division
of Labor between human learners and the AI itself. AT thus allows for an analysis of the system as a whole, focusing
on the tensions and contradictions that arise and drive its development.

2.1.2 Distributed Cognition (DC): A Micro-Analytic Framework

While AT describes the ‘ “what” ‘ and ‘ “why” ‘ of the activity system, Distributed Cognition (DC) provides a micro-
level perspective on ‘ “how” ‘ cognitive processes unfold within it. Pioneered by Edwin Hutchins, DC theory argues
that cognition is not confined to the individual’s mind but is distributed across the entire system, which includes team
members, artifacts (like AI), and the shared environment. In this view, a group of people working together with
their tools constitutes a single, integrated cognitive system.

This perspective is essential for understanding how a human-AI team performs cognitive tasks such as memory,
problem-solving, and decision-making as a unified entity. The AI is not merely an external resource but an integral
part of the team’s cognitive architecture. For example, it can function as the team’s external memory, a compu-
tational engine for complex analysis, or a reasoning partner for simulating outcomes. The team’s overall cognitive
performance is therefore an emergent property of the dynamic coupling and coordination between human cognitive
capabilities and the AI’s computational functions.

2.1.3 Sociomateriality: An Entangled Ontology

Finally, the theory of sociomateriality provides an ontological foundation that avoids a simplistic dualism between ‘
“human” ‘ and ‘ “AI.” ‘ Advanced by scholars like Wanda Orlikowski, this perspective holds that the social (human
interaction, meaning-making) and the material (AI algorithms, interfaces, data structures) are not separate entities
that interact but are ‘ “constitutively entangled.” ‘ Learning practices emerge from this inseparable entanglement,
meaning that one cannot analyze ‘ “human skills” ‘ in isolation from the ‘ “AI tools” ‘ through which they are enacted.
The AI is not just a tool used by humans; it actively participates in and shapes the very practices of collaboration,
communication, and leadership. For example, the design of an AI’s dashboard (material) shapes the leader’s situational
awareness (social), and the leader’s queries (social) in turn shape the data presented by the AI (material).

2.2 Dimension 1: Core Human Skills (Re-contextualized)

The first dimension of the C2L-AI framework redefines core human skills, moving them from abstract, individual
traits to situated practices enacted within the sociotechnical system described above.

Collaboration: Defined as the process of co-regulating the human-AI activity system to achieve a shared Object
(learning goal). This extends beyond simple teamwork to include negotiating the Division of Labor between human
and AI agents and resolving contradictions that emerge within the system.
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Communication: Defined as the set of practices for establishing and maintaining shared understanding, or inter-
subjectivity, within a distributed cognitive system. This encompasses not only human-human dialogue but also the
effective exchange of information with an AI to build a common ground of knowledge.

Leadership: Defined as the function of ethically steering the activity system through complexity and uncertainty.
This involves managing the responsible integration of AI tools, ensuring their use aligns with ethical norms, and
fostering a team culture of critical engagement with and adaptation to AI-generated insights.

2.3 Dimension 2: AI Interaction Competence (AIC)

This dimension formalizes the crucial meta-skill of engaging effectively with AI systems, drawing upon and extend-
ing research in AI literacy. AIC is defined as the capacity to effectively and critically manage the human-AI interface
within the activity system. It comprises three interrelated sub-constructs:

Operational Proficiency: The technical ability to use AI tools to achieve specific goals. This includes skills such
as effective prompt engineering, understanding the functionality of different AI models, and correctly interpreting
their output formats.

Critical Evaluation: The ability to assess AI-generated outputs for accuracy, relevance, and potential bias, while
understanding the AI’s operational limitations and inherent uncertainties. This requires learners to treat AI outputs
not as infallible truths but as information sources that require verification and critical integration.

Interactional Attunement: A novel socio-cognitive construct representing the ability to adapt one’s innate human
‘ “interactional instincts” ‘ to the non-human nature of an AI agent. This involves avoiding inappropriate anthropo-
morphism, building an accurate mental model of the AI’s capabilities and reasoning processes, and developing new
forms of ‘ “dialogue” ‘ suited to a non-human intelligence.

2.4 Dimension 3: Team Cognitive Architecture

This dimension, drawn directly from DC and team science literature, describes the emergent cognitive properties
of the human-AI team as a whole. These are not properties of any single individual but reside in the patterns of
interaction among all system components, including the AI.

Shared Mental Models (SMMs): The degree of overlap in understanding among human team members regarding
the task, the team’s capabilities, the environment, and, critically, the AI’s role, strengths, and limitations. A meta-
analysis by DeChurch and Mesmer-Magnus (2010) established a strong link between SMMs and both team processes
and performance, underscoring their importance as a team-level construct. In a human-AI team, a high-quality
SMM means all members have a consistent and accurate understanding of what tasks are best suited for the AI versus
human members.

Transactive Memory Systems (TMS): The shared, distributed knowledge of ‘ “who knows what” ‘ within the
team. As originally theorized by Wegner, a TMS allows a group to collectively store and retrieve more information
than any individual could alone. The C2L-AI framework extends this concept to include an accurate, shared un-
derstanding of the AI’s specific knowledge domains, data access, and processing capabilities. An effective human-AI
TMS enables the team to efficiently direct queries to the correct expert, whether that expert is a human or the AI.

2.5 Counterfactual Distinction and Novelty of the C2L-AI Framework

The C2L-AI framework’s primary contribution lies in its integrated, sociotechnical approach, which distinguishes it
from prior models in related fields:

Distinction from Computer-Supported Collaborative Learning (CSCL): While CSCL research has a long tradi-
tion of studying technology-mediated collaboration, it has often treated technology as a communication channel or
a contextual factor. C2L-AI, informed by AT and DC, explicitly models the AI as an active, cognitive agent within
the learning system, fundamentally altering the system’s dynamics rather than just mediating them.

Distinction from Team Science: The framework is deeply indebted to concepts like SMMs and TMS from team
science. However, these models were developed for and tested on human-only teams. C2L-AI’s novelty is in its
explicit extension of these constructs to hybrid human-AI teams, which introduces unique challenges such as the
inherent opacity of the AI’s ‘ “mental model” ‘ and the need for new interaction protocols.

Distinction from AI Literacy: Typical AI literacy frameworks tend to focus on the knowledge and skills of an
individual user. C2L-AI situates the crucial individual skill of AI Interaction Competence (AIC) within a broader
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collaborative system, linking it directly to team-level processes (SMMs, TMS) and performance outcomes (effective
collaboration, communication, and leadership). It moves the focus from individual knowledge about AI to collabo-
rative performance with AI.

Table 1: The C2L-AI Framework: Constructs, Definitions, and Theoretical Links
Dimension Construct Definition Theoretical Links

1. Core Human Skills Collaboration The ability to co-regulate interaction processes, negotiate Activity Theory, CSCL, Teamwork Models
(Re-contextualized) roles, and resolve contradictions within a human-AI activity (e.g., Salas et al.)

system to achieve a shared objective.
Communication The set of practices enacted to establish and maintain Distributed Cognition, CSCL, Sociomateriality

intersubjectivity (shared understanding) within a distributed
cognitive system, encompassing both human-human and
human-AI information exchange.

Leadership The function of ethically steering the activity system, Activity Theory, Teamwork Models
managing the integration of AI tools, and fostering a team
culture of critical engagement and adaptation.

2. AI Interaction Operational The technical ability to effectively use AI tools to achieve AI Literacy
Competence (AIC) Proficiency sub-goals (e.g., prompt engineering, interpreting basic outputs).

Critical Evaluation The ability to assess AI outputs for accuracy, relevance, and Critical Thinking Frameworks, Explainable AI
potential bias, and to understand the AI’s operational
boundaries and limitations.

Interactional The socio-cognitive ability to adapt innate ‘ “interactional Human-Computer Interaction, AI Literacy
Attunement instincts” ‘ to the non-human characteristics of AI, avoiding

improper anthropomorphism and building an accurate mental
model of the agent.

3. Team Cognitive Shared Mental The degree of overlapping understanding among human members, Team Cognition, Distributed Cognition
Architecture Models and as represented in the AI’s knowledge base, regarding

the task, team, and tools.
Transactive Memory The shared, distributed knowledge of ‘ “who knows what,” ‘ Team Cognition, PISA Collaborative Problem Solving
Systems including an accurate understanding of the AI’s specific

expertise and data access capabilities.

3 Assessment Methodology: A Multi-modal, Evidence-Centered Approach

To measure the complex, multi-dimensional constructs defined in the C2L-AI framework, traditional assessment
methods that rely on self-reports or final products are insufficient. Such methods fail to capture the dynamic,
process-oriented nature of skills like collaboration and leadership as they unfold in real-time interactions. This section
proposes an innovative, multi-modal assessment methodology grounded in learning analytics and structured by the
rigorous principles of Evidence-Centered Design (ECD). The goal is to mine the rich digital traces left by learners in
technology-enhanced environments to generate valid, process-based evidence of their competencies. This approach
represents a fundamental shift from assessment of learning to assessment for learning, where the data stream can provide
continuous, formative feedback that is integrated into the learning journey itself.

3.1 Grounding Assessment in Evidence-Centered Design (ECD)

ECD is a systematic framework for designing assessments that explicitly links claims about student proficiency to
observable evidence, ensuring validity from the outset of the design process. It provides the coherent argumentative
structure for our assessment plan by connecting three core models:

Competency Model: This model defines the knowledge, skills, and abilities (KSAs) to be assessed. In this study,
the C2L-AI framework itself (Section 2) serves as the Competency Model, providing a detailed specification of the
nine target constructs.

Evidence Model: This model specifies which observable learner behaviors or work products (i.e., digital traces)
can serve as evidence for the competencies defined in the Competency Model. It articulates the logic for why a
particular action (e.g., a student questioning an AI’s output) is indicative of a particular skill (e.g., Critical Evaluation).

Task Model: This model describes the design of tasks and scenarios (e.g., a collaborative VR crisis simulation)
that are specifically engineered to elicit the behaviors identified in the Evidence Model, providing learners with the
opportunity to demonstrate their competence.

This principled approach ensures that the assessment is not an ad-hoc collection of metrics but a defensible system
of inference, where every piece of data is purposefully collected and interpreted as part of a larger validity argument.
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3.2 A Multi-modal Assessment Matrix for the C2L-AI Framework

The proposed assessment methodology integrates several cutting-edge learning analytics techniques to triangulate
evidence from different data sources, enabling a comprehensive measurement of the C2L-AI constructs. The synergy
between these methods allows for a holistic understanding that a single technique could not provide; for example,
SNA can identify the structure of interaction, NLP can analyze the quality of that interaction, and ENA can reveal
the cognitive impact of the interaction on the team’s shared understanding.

3.2.1 Assessing Communication (via Natural Language Processing - NLP)

By analyzing transcripts of text-based chat and spoken dialogue, NLP can provide objective, scalable measures of
communication quality.

Clarity and Coherence: NLP models can compute readability scores (e.g., Flesch-Kincaid), measure lexical di-
versity, and apply text coherence models to quantify the clarity and logical flow of communication.

Argumentation Quality: Advanced argumentation mining techniques can automatically identify argumentative
components such as Claims, Warrants, and Evidence within student discussions. Analyzing the frequency, structure,
and quality of these components provides a deep measure of critical thinking and persuasive communication.

Social and Emotional Tone: Sentiment analysis can be applied to gauge the emotional polarity (positive, negative,
neutral) of messages, providing a proxy measure for empathy and the ability to maintain a positive team climate.

3.2.2 Assessing Collaboration (via Social and Epistemic Network Analysis)

By modeling the patterns of interaction within the team, network analysis can reveal the underlying structure and
dynamics of collaboration.

Social Network Analysis (SNA): Using interaction data (e.g., who replies to whom in a chat), SNA can con-
struct a social network of the team. Key metrics such as network density (a measure of group cohesion) and centrality
measures (identifying influential members or peripheral participants) can quantify the structure of participation and
information flow.

Epistemic Network Analysis (ENA): ENA moves beyond social ties to model the semantic connections in a
team’s discourse. By quantifying and visualizing how different concepts are linked in the conversation over time,
ENA can reveal the structure of the team’s knowledge-building process, showing whether they are engaging in
deep, connected reasoning or superficial information exchange.

3.2.3 Assessing Leadership and AIC (via VR Behavioral Analytics)

Multi-user VR environments provide a ‘ “laboratory in the wild,” ‘ offering high ecological validity while capturing
fine-grained behavioral data that is difficult to obtain in other settings.

Decision-Making Under Pressure: The VR simulation can track the choices leaders make in high-stakes, time-
sensitive situations, the information they seek before deciding, and the speed and quality of those decisions.

Information Management and AI Interaction: The system can log how frequently a leader consults the AI agent,
the nature of their queries (mapping to Operational Proficiency), and whether they challenge or seek verification
for AI-provided information (mapping to Critical Evaluation).

Situational Awareness: Advanced techniques such as eye-tracking within the VR headset can provide objec-
tive measures of a leader’s situational awareness, tracking what information they attend to in the complex virtual
environment.

4 The VR-XAI Experiment: A Validation Study

While proposing a theoretical framework and an assessment methodology are crucial first steps, rigorous empirical
validation is necessary to establish their scientific merit and practical utility. This section moves from proposal to
a detailed experimental design aimed at validating a key causal relationship implied by the C2L-AI framework:
the link between the quality of AI interaction and the development of core human skills. Specifically, this study
investigates how different types of AI feedback within a collaborative VR leadership training environment affect
learning outcomes.
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Table 2: Multi-modal Assessment Matrix for the C2L-AI Framework
C2L-AI Construct Data Source Primary Analysis Technique Key Metrics/Indicators References

Collaboration Chat logs, shared document edit histories, Social Network Analysis (SNA) Network density, reciprocity (group cohesion); 40
project management tool data degree and betweenness centrality

(participation & influence).
Communication Transcripts of oral/written dialogue Natural Language Processing (NLP) Coherence/consistency scores; identification of 28

argumentative components (claim, evidence);
sentiment analysis.

Leadership VR simulation interaction logs (decisions, actions, Behavioral Analytics Decision speed & quality under pressure; frequency 1
communication with virtual agents) of strategic communication; gaze patterns

(situational awareness).
AIC: Operational Proficiency Command logs, interaction history with AI tools Frequency/Pattern Analysis Query efficiency; rate of advanced feature use; 1

error rate in tool usage.
AIC: Critical Evaluation Dialogue transcripts, written reflections NLP Content Analysis Frequency of challenging AI outputs; use of 1

verification strategies; explicit mentions of AI
limitations/bias.

AIC: Interactional Attunement Dialogue transcripts (human-AI prompts & responses) Qualitative Coding & NLP Avoidance of anthropomorphic language; prompt 1
structures built for a machine, not a human;
metacognitive statements about the AI’s nature.

Shared Mental Models Pre/post-test concept maps; dialogue transcripts ENA / Semantic Similarity Analysis Convergence of concept maps over time; high 16
semantic similarity of team terminology (using NLP);
strong co-occurrence of key concepts in ENA graphs.

Transactive Memory Systems Communication logs (‘ “Who asks whom what question?” ‘) Social Network Analysis (SNA) Differentiated network roles; efficient information 20
seeking (queries directed to the correct expert,
human or AI).

4.1 Research Questions and Hypotheses

The study is designed to answer the following research questions and test the corresponding hypotheses:
RQ1: In a collaborative VR training environment, does AI-driven feedback lead to greater learning gains in

leadership competence compared to an absence of feedback?
RQ2: Does Explainable AI (XAI) feedback, which provides causal explanations for performance, lead to signifi-

cantly greater learning gains and deeper understanding than standard, ‘ “black-box” ‘ performance feedback?
H1: Participants in both feedback conditions (Standard and XAI) will demonstrate significantly greater pre-to-

post-test learning gains in leadership competence than participants in the no-feedback control group.
H2: Participants in the XAI feedback condition will demonstrate significantly greater pre-to-post-test learning

gains in leadership competence, skill transfer, and self-efficacy than participants in the standard feedback group.

4.2 Method and Design

The study will employ a between-subjects, pre-test/post-test randomized controlled trial design.
Participants: Participants will be recruited from undergraduate or graduate programs in business, management,

or related fields. A priori power analysis will be conducted to determine the necessary sample size to detect a medium
effect size with a power of 0.80 and an alpha of 0.05. Participants will be randomly assigned to one of three experi-
mental conditions.

Learning Environment: The experiment will be conducted in a multi-user, collaborative VR leadership simu-
lation. Platforms like Mursion or Talespin provide precedents for such environments, which offer high ecological
validity by immersing participants in realistic, dynamic scenarios. The task will be designed as an ill-structured
problem (e.g., managing a corporate crisis with incomplete information) that requires the team to collaborate, com-
municate effectively, and demonstrate leadership to succeed.

Independent Variable (The Manipulation): The sole independent variable is the type of AI feedback provided to
the teams at critical decision points during the simulation. The three levels are:

1. Control Group (No Feedback): Teams participate in the VR simulation but receive no AI-generated perfor-
mance feedback.

2. Standard Feedback Group: After each key decision, teams receive a quantitative, ‘ “black-box” ‘ performance
score (e.g., ‘ “Your team’s decision-making effectiveness was rated 85 out of 100” ‘).

3. XAI Feedback Group: Teams receive the same quantitative score accompanied by a concise, causal explana-
tion generated by the AI (e.g., ‘ “Your team’s effectiveness was rated 85/100 because you rapidly identified the key
information, but you failed to adequately consider the long-term risks of Option B” ‘). This manipulation directly
tests the impact of AI explainability on learning and skill acquisition.

4.3 Procedure

The experimental procedure will be standardized across all conditions, with the exception of the feedback manipu-
lation:
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1. Informed Consent and Pre-Test: After providing informed consent, all participants will complete a battery
of pre-test measures to establish a baseline for their leadership, communication, and AIC skills, using a subset of the
instruments from the multi-modal assessment matrix (Table 2).

2. Randomization: Participants will be randomly assigned to teams, and teams will be randomly assigned to one
of the three experimental conditions.

3. VR Intervention: Each team will engage in the same collaborative VR leadership simulation. The AI will play
the role of a data analyst or advisor within the simulation. At predefined intervals, the two experimental groups will
receive their respective types of AI feedback.

4. Post-Test: Immediately following the intervention, all participants will complete a post-test assessment battery
that is parallel in structure and difficulty to the pre-test, measuring learning gains. Additional measures will assess
skill transfer to a novel but related problem, as well as self-efficacy and cognitive load.

4.4 Measures and Analysis Plan

Dependent Variables: The primary dependent variable is the learning gain in leadership competence, calculated as the
difference between post-test and pre-test scores derived from the VR behavioral analytics. Secondary dependent
variables include learning gains in communication and AIC, and self-reported measures of self-efficacy and cognitive
load.

Measurement Invariance: A critical preliminary step is to establish the validity of the assessment tools across
the experimental groups. Before testing the main hypotheses, Multi-Group Confirmatory Factor Analysis (MG-CFA)
will be conducted on the measurement models for the key constructs. This statistical procedure tests whether the
assessment instruments are measuring the same underlying psychological constructs in the same way across the
control, standard, and XAI groups. Establishing measurement invariance (at the configural, metric, and scalar levels)
is a prerequisite for making meaningful and valid comparisons of group means. This step is the methodological
linchpin that ensures any observed differences are attributable to the intervention, not to a measurement artifact.

Hypothesis Testing: The primary statistical analysis to test H1 and H2 will be a one-way Analysis of Covariance
(ANCOVA). For each key dependent variable (e.g., post-test leadership score), the ANCOVA will compare the means
of the three groups while statistically controlling for participants’ corresponding pre-test scores, whichwill be entered
as a covariate. This method provides a more precise estimate of the intervention’s net effect by accounting for initial
differences between participants.

Process Analysis: To explore the mechanisms behind any observed effects, the rich process data from the VR
interaction logs and communication transcripts will be analyzed. Techniques such as sequential analysis or Epistemic
Network Analysis (ENA)will be used to compare the collaborative patterns and knowledge-building structures of the
teams across the three conditions, investigating how XAI feedback may have altered the collaborative process itself.

5 Anticipated Results and Contributions

As the experiment outlined is a proposed study, this section describes the anticipated pattern of results and discusses
how these findings would contribute significantly to the field.

5.1 Anticipated Main Effects

The primary hypothesis (H2) predicts a significant main effect of the feedback condition on leadership learning gains.
It is anticipated that the ANCOVA will yield a statistically significant difference between the three groups’ adjusted
post-test means. Subsequent post-hoc comparisons (e.g., using Tukey’s HSD) are expected to reveal a specific ordinal
pattern: the XAI feedback group’s mean score will be significantly higher than the standard feedback group’s mean,
which in turn will be significantly higher than the control group’s mean (XAI > Standard > Control). This outcome
would provide strong, causal evidence supporting the core hypotheses, demonstrating not only that AI feedback
is beneficial for learning complex skills, but that the explainability of that feedback is a critical determinant of its
effectiveness.

5.2 Anticipated Process-Level Findings

The analysis of process data is expected to illuminate the mechanisms underlying the main effects. For instance, an
ENA of the teams’ dialogues is anticipated to show that conversations in the XAI group feature a denser network
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Table 3: VR-XAI Experiment Design Summary
Component Description

Research Questions What is the causal effect of Explainable AI (XAI) feedback, compared to standard AI feed-
back and no feedback, on the development of leadership competence in a collaborative VR
training environment?

Design Between-subjects, pre-test/post-test randomized controlled trial.

Independent Variable Type of AI Feedback (3 levels): 1. Control (No AI feedback), 2. Standard Feedback
(Performance score only), 3. XAI Feedback (Performance score + causal explanation).

Dependent Variables Primary: Learning gain in Leadership Competence (measured via VR behavioral analytics).
Secondary: Learning gains in Communication and AIC; Self-Efficacy (questionnaire); Cogni-
tive Load (questionnaire).

Task Environment A multi-user, collaborative VR simulation requiring team-based decision-making under
uncertainty and time pressure.

Procedure 1. Pre-test assessment. 2. Random assignment to conditions. 3. VR training intervention.
4. Post-test assessment.

Analysis Plan 1. Psychometrics: Use Multi-Group Confirmatory Factor Analysis (MG-CFA) to test for
measurement invariance of assessment tools across groups. 2. Main Analysis: Use Analysis
of Covariance (ANCOVA) to compare post-test scores on dependent variables, with pre-
test scores as covariates. 3. Process Analysis: Use Sequential Analysis or ENA on interaction
logs to explore mechanisms.

of connections between identified problems, evidence considered, and proposed solutions. This would suggest that
the causal explanations provided by the AI prompted deeper, more structured reasoning and helped the team build a
more robust shared mental model of the task. In contrast, the standard feedback group’s network might show a focus
on performance scores without a corresponding increase in conceptual linkage, while the control group’s network
would be the least structured. Such findings would suggest that the superior learning gains in the XAI group are
mediated by an improvement in the quality of the team’s collaborative knowledge-building process.

5.3 Implications of Anticipated Findings

If the results align with these expectations, they would constitute a major contribution to both theory and practice.
They would provide some of the first rigorous, causal evidence that the manner in which an AI system communicates
its reasoning directly and significantly impacts human skill acquisition in a complex, collaborative domain. This
would validate a central tenet of the C2L-AI framework: that the quality of the human-AI interaction, as captured
in the AIC dimension (specifically, the AI’s capacity to provide explanations that support users’ Critical Evaluation),
is a critical lever for developing the Core Human Skills dimension (Leadership). The findings would lend strong
empirical support to the framework’s structure and its utility as a model for designing effective human-AI learning
systems.

6 Discussion

The anticipated findings from the VR-XAI experiment hold profound implications for theory, instructional practice,
and the design of educational technology. This section interprets these potential results, discusses their broader
significance, and acknowledges the study’s limitations while charting a course for future research.

6.1 Theoretical Implications

The expected results would provide strong empirical grounding for the C2L-AI framework, particularly by demon-
strating the critical, causal link between the AI Interaction Competence (AIC) dimension and the Core Human Skills
dimension. The superior performance of the XAI group would suggest that when an AI’s feedback is transparent and
interpretable, it does more than simply provide information; it scaffolds the user’s ability to critically evaluate situa-
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tions, a key component of both AIC and effective leadership. This supports the framework’s core assertion that these
competencies are not developed in isolation but are deeply interconnected within a single sociotechnical system.

Furthermore, these findings would lend credence to the concept of ‘ “human-AI co-evolution.” ‘ A well-designed
XAI that provides causal feedback acts as a catalyst in this evolutionary spiral. It enhances human understanding,
which leads to better performance and more sophisticated skill application. This, in turn, provides richer data that
can be used to further refine the AI’s support. This moves beyond a simple view of AI as a tool and positions it as a
partner in a developmental process, with explainability being a key mechanism that facilitates this partnership.

6.2 Practical and Design Implications

The practical implications for instructional designers and educational technology developers are direct and actionable.
The central message would be that for AI to be a truly effective educational partner, particularly for complex skill
development, it is not enough for it to be correct; it must be interpretable.

For Instructional Design: Educators designing learning experiences that incorporate AI should prioritize activities
that require learners to engage with, question, and even challenge AI-generated outputs. The focus should shift from
simply using AI to get answers to using AI to refine one’s own reasoning and decision-making processes.

For TechnologyDevelopment: The findingswould compel developers of educational AI tomove beyond ‘ “black-
box” ‘ models that deliver only performance scores or recommendations. Instead, they should invest in robust XAI
features that provide users with clear, concise, and causal explanations for the AI’s judgments. For example, an
automated essay-scoring tool should not just provide a grade but should highlight specific rhetorical moves that
contributed positively or negatively to the score, linking its evaluation back to the rubric in an understandable way.

6.3 Limitations and Future Research

While the proposed experimental design is rigorous, it is essential to acknowledge its limitations. As a laboratory-
based studywith a specific population (e.g., university students) and a single task context (a specific VR crisis scenario),
the generalizability of the findings to other populations, domains, and real-world settings must be approached with
caution. The short-term nature of the intervention also does not allow for conclusions about the long-term retention
and transfer of the skills learned.

These limitations point directly to a rich agenda for future research. The experiment should be replicated in
diverse settings, such as K-12 education or corporate training, and with different complex tasks like collaborative
scientific inquiry or medical diagnosis, to test the robustness of the findings. Future research should also employ
longitudinal designs to track the development of C2L-AI competencies over extended periods, examining how skills
are retained and transferred to authentic workplace or academic environments. Furthermore, as the proposed study
uses one form of textual XAI, future work should investigate the differential impacts of various XAI modalities
(e.g., visual explanations, interactive ‘ “what-if” ‘ scenarios) and levels of complexity on learning. Finally, given that
this study tests one critical link within the C2L-AI framework, a broader research program is needed to empirically
validate the other proposed relationships, such as how SMMs andTMSmediate the relationship between collaborative
processes and team outcomes in human-AI teams.

7 Ethics and Governance

The integration of AI into the development and assessment of human skills, while promising, is laden with ethical
challenges. A reactive, post-hoc approach to ethics is insufficient. Instead, responsible innovation demands that
ethical principles be proactively embedded into the design, development, and deployment of these systems from
their inception. This section outlines a comprehensive governance framework to ensure that human-AI learning
systems are fair, transparent, secure, and respectful of human agency.

7.1 A Proactive Framework for Responsible Innovation

The ethical implementation of AI in education requires moving beyond compliance checklists to a culture of deep
ethical reflection. The framework proposed here is organized around four core principles: Fairness, Transparency,
Privacy, and Human Agency. These principles must be operationalized through concrete processes and technical
safeguards throughout the AI system’s lifecycle.
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7.2 Operationalizing Ethical Principles

The following subsections detail specific, actionable strategies for implementing each ethical principle within the
context of systems like the one proposed in this paper.

7.2.1 Fairness and Bias Mitigation

AI models trained on historical data can inadvertently learn, perpetuate, and even amplify existing societal biases
related to race, gender, socioeconomic status, and other characteristics. An AI system designed to assess leader-
ship, if trained on biased data, could systematically disadvantage individuals from underrepresented groups, thereby
exacerbating educational and professional inequities.

To combat this, a mandatory AI Bias Audit must be a standard procedure before any educational AI system is
deployed. This audit should be multi-faceted, encompassing a data audit, a model audit, and a pedagogical audit. The
data audit involves scrutinizing the training datasets for demographic representativeness and identifying potential
sources of historical bias. The model audit consists of conducting performance testing of the AI model across different
demographic subgroups to detect any disparate impact, using fairness metrics (e.g., equalized odds) to quantify and
report on model fairness. Finally, the pedagogical audit evaluates the underlying instructional logic of the AI; for
instance, an adaptive system must be checked to ensure it does not systematically channel certain student groups
towards less challenging or less valuable learning pathways.

7.2.2 Transparency and Explainability (XAI)

The ‘ “black box” ‘ nature of many sophisticated AI models is ethically untenable in high-stakes educational contexts.
If a student receives a poor assessment from an AI but cannot understand the basis for that judgment, the assessment
is pedagogically useless and ethically irresponsible. Therefore, Explainable AI (XAI) is not merely a desirable feature
but an ethical imperative. Assessment and feedback systems must be designed to provide clear, human-understandable
justifications for their outputs. This transparency is fundamental for building trust with students and educators,
enabling meaningful reflection, and providing a basis for contesting or appealing an AI’s judgment.

7.2.3 Privacy and Security

AI systems for personalized learning and assessment often collect vast quantities of sensitive student data, creating
significant privacy risks. To ensure robust data governance, the use ofData Flow Diagrams (DFDs) should be standard
practice. A DFD is a visualization that maps precisely how student data is collected, processed, stored, and shared.
This process helps ensure:

Data Minimization: Only data that is strictly necessary for the stated educational purpose is collected.
Security: Potential vulnerabilities in data storage and transmission are identified and mitigated through measures

like encryption and anonymization.
Compliance and Consent: The data flows are transparent to students and parents, facilitating informed consent

and ensuring compliance with regulations such as the Family Educational Rights and Privacy Act (FERPA).

7.2.4 Human Agency and Oversight

The goal of AI in education should be to augment human intelligence, not supplant human judgment. This requires
a steadfast commitment to the ‘ “human-in-the-loop” ‘ principle, especially for high-stakes decisions. Any AI-
generated assessment that could significantly impact a student’s academic standing or future opportunities must be
subject to review and final approval by a qualified human educator.

Furthermore, institutions must establish a clear, accessible, and fair Student Appeal Process. If a student believes
an AI’s assessment is inaccurate or unjust, they must have a formal recourse to have their case reviewed by human
decision-makers. This mechanism is essential for safeguarding student rights and maintaining human accountability
at the center of the educational process.

8 Conclusion

The rapid ascent of AI has created a pivotal moment for education, paradoxically illuminating the escalating value
of uniquely human skills. This paper has argued that in an era where AI can perform a vast array of analytical
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tasks, a ‘ “renaissance” ‘ of human competencies—particularly collaboration, communication, and leadership—is a
fundamental necessity for individual and societal flourishing. The journey from theorizing a new sociotechnical
model of human-AI competence to designing a rigorous methodology for its assessment and a causal experiment for
its validation converges on a singular theme: the future of education must be profoundly human-centric, even as it
becomes increasingly technologically advanced.

8.1 Summary of Contributions

This paper has sought to advance the field by making four primary contributions. First, through a unified theoretical
synthesis integrating Activity Theory, Distributed Cognition, and Sociomateriality, it offers a novel sociotechnical
framework for analyzing human-AI learning that moves beyond simplistic dichotomies of human versus machine.
Second, it proposes the innovative C2L-AI framework, a multi-dimensional model that systematically defines the
core human skills, AI interaction competencies, and team cognitive architecture essential for success in human-
AI collaborative environments. Third, it presents a rigorous multi-modal assessment methodology; grounded in
Evidence-Centered Design, this operational and data-driven methodology leverages NLP, SNA, ENA, and VR
behavioral analytics to measure the dynamic processes of collaboration, moving assessment from a summative event
to a formative, integrated part of learning. Finally, it provides both an empirical pathway and an ethical guide by
offering a clear, rigorous experimental design for empirically testing the framework’s core tenets and a comprehensive
ethical implementation checklist to guide the responsible design and deployment of educational AI systems.

8.2 Human Skill Resilience in an Age of Co-evolution

The ultimate argument of this paper returns to the theme of ‘ “human-AI co-evolution.” ‘ The final goal of this line of
inquiry is to foster what can be termed ‘ “Human Skill Resilience” ‘: a deeply ingrained capacity to continuously learn,
adapt, collaborate effectively, communicate with clarity and empathy, and lead with ethical integrity, irrespective
of how AI technologies transform the world. This resilience, rooted in well-developed and adaptable human skills,
is the cornerstone for navigating an uncertain future and ensuring that humanity remains the architect of its own
destiny. In this co-evolutionary future, the most critical educational outcome is not merely to adapt to AI, but to
engage in a dynamic process where human skills become more sophisticated through interaction with intelligent
systems, and AI tools, in turn, are designed to better support these evolving human capabilities.

8.3 Future Research Directions

The intersection of AI and human skill development is a nascent and fertile ground for future inquiry. Building on
the work presented here, several research directions are particularly pressing. There is a critical need for longitudinal
research to understand the long-term impact of AI-augmented learning environments on the development, reten-
tion, and transfer of collaboration, communication, and leadership skills. Further research is crucial in developing
and validating robust, context-aware, and practical XAI methods specifically designed for the assessment of complex
human skills in educational settings. It is also essential to investigate the most effective models for human-AI hybrid
feedback and instruction, balancing the scalability of AI with the pedagogical richness of human mentorship. More-
over, exploring the nuances of C2L-AI competencies in diverse human-AI team configurations and across different
cultural contexts will yield valuable insights into the generalizability of these models. A global perspective requires
focused research and international collaboration to address the challenges of scaling equitable access to high-quality
AI educational tools and implementing robust ethical frameworks in under-resourced regions and diverse educa-
tional systems. Finally, understanding how AI can support the continuous adaptation of human skills throughout an
individual’s career is increasingly important for lifelong learning in a rapidly changing world of work.
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